Spaces:
Runtime error
Runtime error
File size: 20,849 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.config import ConfigDict
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.models.task_modules.samplers import SamplingResult
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptConfigType
@MODELS.register_module()
class GridHead(BaseModule):
"""Implementation of `Grid Head <https://arxiv.org/abs/1811.12030>`_
Args:
grid_points (int): The number of grid points. Defaults to 9.
num_convs (int): The number of convolution layers. Defaults to 8.
roi_feat_size (int): RoI feature size. Default to 14.
in_channels (int): The channel number of inputs features.
Defaults to 256.
conv_kernel_size (int): The kernel size of convolution layers.
Defaults to 3.
point_feat_channels (int): The number of channels of each point
features. Defaults to 64.
class_agnostic (bool): Whether use class agnostic classification.
If so, the output channels of logits will be 1. Defaults to False.
loss_grid (:obj:`ConfigDict` or dict): Config of grid loss.
conv_cfg (:obj:`ConfigDict` or dict, optional) dictionary to
construct and config conv layer.
norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
config norm layer.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict]): Initialization config dict.
"""
def __init__(
self,
grid_points: int = 9,
num_convs: int = 8,
roi_feat_size: int = 14,
in_channels: int = 256,
conv_kernel_size: int = 3,
point_feat_channels: int = 64,
deconv_kernel_size: int = 4,
class_agnostic: bool = False,
loss_grid: ConfigType = dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=15),
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='GN', num_groups=36),
init_cfg: MultiConfig = [
dict(type='Kaiming', layer=['Conv2d', 'Linear']),
dict(
type='Normal',
layer='ConvTranspose2d',
std=0.001,
override=dict(
type='Normal',
name='deconv2',
std=0.001,
bias=-np.log(0.99 / 0.01)))
]
) -> None:
super().__init__(init_cfg=init_cfg)
self.grid_points = grid_points
self.num_convs = num_convs
self.roi_feat_size = roi_feat_size
self.in_channels = in_channels
self.conv_kernel_size = conv_kernel_size
self.point_feat_channels = point_feat_channels
self.conv_out_channels = self.point_feat_channels * self.grid_points
self.class_agnostic = class_agnostic
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
if isinstance(norm_cfg, dict) and norm_cfg['type'] == 'GN':
assert self.conv_out_channels % norm_cfg['num_groups'] == 0
assert self.grid_points >= 4
self.grid_size = int(np.sqrt(self.grid_points))
if self.grid_size * self.grid_size != self.grid_points:
raise ValueError('grid_points must be a square number')
# the predicted heatmap is half of whole_map_size
if not isinstance(self.roi_feat_size, int):
raise ValueError('Only square RoIs are supporeted in Grid R-CNN')
self.whole_map_size = self.roi_feat_size * 4
# compute point-wise sub-regions
self.sub_regions = self.calc_sub_regions()
self.convs = []
for i in range(self.num_convs):
in_channels = (
self.in_channels if i == 0 else self.conv_out_channels)
stride = 2 if i == 0 else 1
padding = (self.conv_kernel_size - 1) // 2
self.convs.append(
ConvModule(
in_channels,
self.conv_out_channels,
self.conv_kernel_size,
stride=stride,
padding=padding,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
bias=True))
self.convs = nn.Sequential(*self.convs)
self.deconv1 = nn.ConvTranspose2d(
self.conv_out_channels,
self.conv_out_channels,
kernel_size=deconv_kernel_size,
stride=2,
padding=(deconv_kernel_size - 2) // 2,
groups=grid_points)
self.norm1 = nn.GroupNorm(grid_points, self.conv_out_channels)
self.deconv2 = nn.ConvTranspose2d(
self.conv_out_channels,
grid_points,
kernel_size=deconv_kernel_size,
stride=2,
padding=(deconv_kernel_size - 2) // 2,
groups=grid_points)
# find the 4-neighbor of each grid point
self.neighbor_points = []
grid_size = self.grid_size
for i in range(grid_size): # i-th column
for j in range(grid_size): # j-th row
neighbors = []
if i > 0: # left: (i - 1, j)
neighbors.append((i - 1) * grid_size + j)
if j > 0: # up: (i, j - 1)
neighbors.append(i * grid_size + j - 1)
if j < grid_size - 1: # down: (i, j + 1)
neighbors.append(i * grid_size + j + 1)
if i < grid_size - 1: # right: (i + 1, j)
neighbors.append((i + 1) * grid_size + j)
self.neighbor_points.append(tuple(neighbors))
# total edges in the grid
self.num_edges = sum([len(p) for p in self.neighbor_points])
self.forder_trans = nn.ModuleList() # first-order feature transition
self.sorder_trans = nn.ModuleList() # second-order feature transition
for neighbors in self.neighbor_points:
fo_trans = nn.ModuleList()
so_trans = nn.ModuleList()
for _ in range(len(neighbors)):
# each transition module consists of a 5x5 depth-wise conv and
# 1x1 conv.
fo_trans.append(
nn.Sequential(
nn.Conv2d(
self.point_feat_channels,
self.point_feat_channels,
5,
stride=1,
padding=2,
groups=self.point_feat_channels),
nn.Conv2d(self.point_feat_channels,
self.point_feat_channels, 1)))
so_trans.append(
nn.Sequential(
nn.Conv2d(
self.point_feat_channels,
self.point_feat_channels,
5,
1,
2,
groups=self.point_feat_channels),
nn.Conv2d(self.point_feat_channels,
self.point_feat_channels, 1)))
self.forder_trans.append(fo_trans)
self.sorder_trans.append(so_trans)
self.loss_grid = MODELS.build(loss_grid)
def forward(self, x: Tensor) -> Dict[str, Tensor]:
"""forward function of ``GridHead``.
Args:
x (Tensor): RoI features, has shape
(num_rois, num_channels, roi_feat_size, roi_feat_size).
Returns:
Dict[str, Tensor]: Return a dict including fused and unfused
heatmap.
"""
assert x.shape[-1] == x.shape[-2] == self.roi_feat_size
# RoI feature transformation, downsample 2x
x = self.convs(x)
c = self.point_feat_channels
# first-order fusion
x_fo = [None for _ in range(self.grid_points)]
for i, points in enumerate(self.neighbor_points):
x_fo[i] = x[:, i * c:(i + 1) * c]
for j, point_idx in enumerate(points):
x_fo[i] = x_fo[i] + self.forder_trans[i][j](
x[:, point_idx * c:(point_idx + 1) * c])
# second-order fusion
x_so = [None for _ in range(self.grid_points)]
for i, points in enumerate(self.neighbor_points):
x_so[i] = x[:, i * c:(i + 1) * c]
for j, point_idx in enumerate(points):
x_so[i] = x_so[i] + self.sorder_trans[i][j](x_fo[point_idx])
# predicted heatmap with fused features
x2 = torch.cat(x_so, dim=1)
x2 = self.deconv1(x2)
x2 = F.relu(self.norm1(x2), inplace=True)
heatmap = self.deconv2(x2)
# predicted heatmap with original features (applicable during training)
if self.training:
x1 = x
x1 = self.deconv1(x1)
x1 = F.relu(self.norm1(x1), inplace=True)
heatmap_unfused = self.deconv2(x1)
else:
heatmap_unfused = heatmap
return dict(fused=heatmap, unfused=heatmap_unfused)
def calc_sub_regions(self) -> List[Tuple[float]]:
"""Compute point specific representation regions.
See `Grid R-CNN Plus <https://arxiv.org/abs/1906.05688>`_ for details.
"""
# to make it consistent with the original implementation, half_size
# is computed as 2 * quarter_size, which is smaller
half_size = self.whole_map_size // 4 * 2
sub_regions = []
for i in range(self.grid_points):
x_idx = i // self.grid_size
y_idx = i % self.grid_size
if x_idx == 0:
sub_x1 = 0
elif x_idx == self.grid_size - 1:
sub_x1 = half_size
else:
ratio = x_idx / (self.grid_size - 1) - 0.25
sub_x1 = max(int(ratio * self.whole_map_size), 0)
if y_idx == 0:
sub_y1 = 0
elif y_idx == self.grid_size - 1:
sub_y1 = half_size
else:
ratio = y_idx / (self.grid_size - 1) - 0.25
sub_y1 = max(int(ratio * self.whole_map_size), 0)
sub_regions.append(
(sub_x1, sub_y1, sub_x1 + half_size, sub_y1 + half_size))
return sub_regions
def get_targets(self, sampling_results: List[SamplingResult],
rcnn_train_cfg: ConfigDict) -> Tensor:
"""Calculate the ground truth for all samples in a batch according to
the sampling_results.".
Args:
sampling_results (List[:obj:`SamplingResult`]): Assign results of
all images in a batch after sampling.
rcnn_train_cfg (:obj:`ConfigDict`): `train_cfg` of RCNN.
Returns:
Tensor: Grid heatmap targets.
"""
# mix all samples (across images) together.
pos_bboxes = torch.cat([res.pos_bboxes for res in sampling_results],
dim=0).cpu()
pos_gt_bboxes = torch.cat(
[res.pos_gt_bboxes for res in sampling_results], dim=0).cpu()
assert pos_bboxes.shape == pos_gt_bboxes.shape
# expand pos_bboxes to 2x of original size
x1 = pos_bboxes[:, 0] - (pos_bboxes[:, 2] - pos_bboxes[:, 0]) / 2
y1 = pos_bboxes[:, 1] - (pos_bboxes[:, 3] - pos_bboxes[:, 1]) / 2
x2 = pos_bboxes[:, 2] + (pos_bboxes[:, 2] - pos_bboxes[:, 0]) / 2
y2 = pos_bboxes[:, 3] + (pos_bboxes[:, 3] - pos_bboxes[:, 1]) / 2
pos_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
pos_bbox_ws = (pos_bboxes[:, 2] - pos_bboxes[:, 0]).unsqueeze(-1)
pos_bbox_hs = (pos_bboxes[:, 3] - pos_bboxes[:, 1]).unsqueeze(-1)
num_rois = pos_bboxes.shape[0]
map_size = self.whole_map_size
# this is not the final target shape
targets = torch.zeros((num_rois, self.grid_points, map_size, map_size),
dtype=torch.float)
# pre-compute interpolation factors for all grid points.
# the first item is the factor of x-dim, and the second is y-dim.
# for a 9-point grid, factors are like (1, 0), (0.5, 0.5), (0, 1)
factors = []
for j in range(self.grid_points):
x_idx = j // self.grid_size
y_idx = j % self.grid_size
factors.append((1 - x_idx / (self.grid_size - 1),
1 - y_idx / (self.grid_size - 1)))
radius = rcnn_train_cfg.pos_radius
radius2 = radius**2
for i in range(num_rois):
# ignore small bboxes
if (pos_bbox_ws[i] <= self.grid_size
or pos_bbox_hs[i] <= self.grid_size):
continue
# for each grid point, mark a small circle as positive
for j in range(self.grid_points):
factor_x, factor_y = factors[j]
gridpoint_x = factor_x * pos_gt_bboxes[i, 0] + (
1 - factor_x) * pos_gt_bboxes[i, 2]
gridpoint_y = factor_y * pos_gt_bboxes[i, 1] + (
1 - factor_y) * pos_gt_bboxes[i, 3]
cx = int((gridpoint_x - pos_bboxes[i, 0]) / pos_bbox_ws[i] *
map_size)
cy = int((gridpoint_y - pos_bboxes[i, 1]) / pos_bbox_hs[i] *
map_size)
for x in range(cx - radius, cx + radius + 1):
for y in range(cy - radius, cy + radius + 1):
if x >= 0 and x < map_size and y >= 0 and y < map_size:
if (x - cx)**2 + (y - cy)**2 <= radius2:
targets[i, j, y, x] = 1
# reduce the target heatmap size by a half
# proposed in Grid R-CNN Plus (https://arxiv.org/abs/1906.05688).
sub_targets = []
for i in range(self.grid_points):
sub_x1, sub_y1, sub_x2, sub_y2 = self.sub_regions[i]
sub_targets.append(targets[:, [i], sub_y1:sub_y2, sub_x1:sub_x2])
sub_targets = torch.cat(sub_targets, dim=1)
sub_targets = sub_targets.to(sampling_results[0].pos_bboxes.device)
return sub_targets
def loss(self, grid_pred: Tensor, sample_idx: Tensor,
sampling_results: List[SamplingResult],
rcnn_train_cfg: ConfigDict) -> dict:
"""Calculate the loss based on the features extracted by the grid head.
Args:
grid_pred (dict[str, Tensor]): Outputs of grid_head forward.
sample_idx (Tensor): The sampling index of ``grid_pred``.
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
rcnn_train_cfg (obj:`ConfigDict`): `train_cfg` of RCNN.
Returns:
dict: A dictionary of loss and targets components.
"""
grid_targets = self.get_targets(sampling_results, rcnn_train_cfg)
grid_targets = grid_targets[sample_idx]
loss_fused = self.loss_grid(grid_pred['fused'], grid_targets)
loss_unfused = self.loss_grid(grid_pred['unfused'], grid_targets)
loss_grid = loss_fused + loss_unfused
return dict(loss_grid=loss_grid)
def predict_by_feat(self,
grid_preds: Dict[str, Tensor],
results_list: List[InstanceData],
batch_img_metas: List[dict],
rescale: bool = False) -> InstanceList:
"""Adjust the predicted bboxes from bbox head.
Args:
grid_preds (dict[str, Tensor]): dictionary outputted by forward
function.
results_list (list[:obj:`InstanceData`]): Detection results of
each image.
batch_img_metas (list[dict]): List of image information.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape \
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4), the last \
dimension 4 arrange as (x1, y1, x2, y2).
"""
num_roi_per_img = tuple(res.bboxes.size(0) for res in results_list)
grid_preds = {
k: v.split(num_roi_per_img, 0)
for k, v in grid_preds.items()
}
for i, results in enumerate(results_list):
if len(results) != 0:
bboxes = self._predict_by_feat_single(
grid_pred=grid_preds['fused'][i],
bboxes=results.bboxes,
img_meta=batch_img_metas[i],
rescale=rescale)
results.bboxes = bboxes
return results_list
def _predict_by_feat_single(self,
grid_pred: Tensor,
bboxes: Tensor,
img_meta: dict,
rescale: bool = False) -> Tensor:
"""Adjust ``bboxes`` according to ``grid_pred``.
Args:
grid_pred (Tensor): Grid fused heatmap.
bboxes (Tensor): Predicted bboxes, has shape (n, 4)
img_meta (dict): image information.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
Tensor: adjusted bboxes.
"""
assert bboxes.size(0) == grid_pred.size(0)
grid_pred = grid_pred.sigmoid()
R, c, h, w = grid_pred.shape
half_size = self.whole_map_size // 4 * 2
assert h == w == half_size
assert c == self.grid_points
# find the point with max scores in the half-sized heatmap
grid_pred = grid_pred.view(R * c, h * w)
pred_scores, pred_position = grid_pred.max(dim=1)
xs = pred_position % w
ys = pred_position // w
# get the position in the whole heatmap instead of half-sized heatmap
for i in range(self.grid_points):
xs[i::self.grid_points] += self.sub_regions[i][0]
ys[i::self.grid_points] += self.sub_regions[i][1]
# reshape to (num_rois, grid_points)
pred_scores, xs, ys = tuple(
map(lambda x: x.view(R, c), [pred_scores, xs, ys]))
# get expanded pos_bboxes
widths = (bboxes[:, 2] - bboxes[:, 0]).unsqueeze(-1)
heights = (bboxes[:, 3] - bboxes[:, 1]).unsqueeze(-1)
x1 = (bboxes[:, 0, None] - widths / 2)
y1 = (bboxes[:, 1, None] - heights / 2)
# map the grid point to the absolute coordinates
abs_xs = (xs.float() + 0.5) / w * widths + x1
abs_ys = (ys.float() + 0.5) / h * heights + y1
# get the grid points indices that fall on the bbox boundaries
x1_inds = [i for i in range(self.grid_size)]
y1_inds = [i * self.grid_size for i in range(self.grid_size)]
x2_inds = [
self.grid_points - self.grid_size + i
for i in range(self.grid_size)
]
y2_inds = [(i + 1) * self.grid_size - 1 for i in range(self.grid_size)]
# voting of all grid points on some boundary
bboxes_x1 = (abs_xs[:, x1_inds] * pred_scores[:, x1_inds]).sum(
dim=1, keepdim=True) / (
pred_scores[:, x1_inds].sum(dim=1, keepdim=True))
bboxes_y1 = (abs_ys[:, y1_inds] * pred_scores[:, y1_inds]).sum(
dim=1, keepdim=True) / (
pred_scores[:, y1_inds].sum(dim=1, keepdim=True))
bboxes_x2 = (abs_xs[:, x2_inds] * pred_scores[:, x2_inds]).sum(
dim=1, keepdim=True) / (
pred_scores[:, x2_inds].sum(dim=1, keepdim=True))
bboxes_y2 = (abs_ys[:, y2_inds] * pred_scores[:, y2_inds]).sum(
dim=1, keepdim=True) / (
pred_scores[:, y2_inds].sum(dim=1, keepdim=True))
bboxes = torch.cat([bboxes_x1, bboxes_y1, bboxes_x2, bboxes_y2], dim=1)
bboxes[:, [0, 2]].clamp_(min=0, max=img_meta['img_shape'][1])
bboxes[:, [1, 3]].clamp_(min=0, max=img_meta['img_shape'][0])
if rescale:
assert img_meta.get('scale_factor') is not None
bboxes /= bboxes.new_tensor(img_meta['scale_factor']).repeat(
(1, 2))
return bboxes
|