Spaces:
Runtime error
Runtime error
File size: 24,599 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import Tensor
from mmdet.models.test_time_augs import merge_aug_masks
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import InstanceList, OptConfigType
from ..layers import adaptive_avg_pool2d
from ..task_modules.samplers import SamplingResult
from ..utils import empty_instances, unpack_gt_instances
from .cascade_roi_head import CascadeRoIHead
@MODELS.register_module()
class HybridTaskCascadeRoIHead(CascadeRoIHead):
"""Hybrid task cascade roi head including one bbox head and one mask head.
https://arxiv.org/abs/1901.07518
Args:
num_stages (int): Number of cascade stages.
stage_loss_weights (list[float]): Loss weight for every stage.
semantic_roi_extractor (:obj:`ConfigDict` or dict, optional):
Config of semantic roi extractor. Defaults to None.
Semantic_head (:obj:`ConfigDict` or dict, optional):
Config of semantic head. Defaults to None.
interleaved (bool): Whether to interleaves the box branch and mask
branch. If True, the mask branch can take the refined bounding
box predictions. Defaults to True.
mask_info_flow (bool): Whether to turn on the mask information flow,
which means that feeding the mask features of the preceding stage
to the current stage. Defaults to True.
"""
def __init__(self,
num_stages: int,
stage_loss_weights: List[float],
semantic_roi_extractor: OptConfigType = None,
semantic_head: OptConfigType = None,
semantic_fusion: Tuple[str] = ('bbox', 'mask'),
interleaved: bool = True,
mask_info_flow: bool = True,
**kwargs) -> None:
super().__init__(
num_stages=num_stages,
stage_loss_weights=stage_loss_weights,
**kwargs)
assert self.with_bbox
assert not self.with_shared_head # shared head is not supported
if semantic_head is not None:
self.semantic_roi_extractor = MODELS.build(semantic_roi_extractor)
self.semantic_head = MODELS.build(semantic_head)
self.semantic_fusion = semantic_fusion
self.interleaved = interleaved
self.mask_info_flow = mask_info_flow
# TODO move to base_roi_head later
@property
def with_semantic(self) -> bool:
"""bool: whether the head has semantic head"""
return hasattr(self,
'semantic_head') and self.semantic_head is not None
def _bbox_forward(
self,
stage: int,
x: Tuple[Tensor],
rois: Tensor,
semantic_feat: Optional[Tensor] = None) -> Dict[str, Tensor]:
"""Box head forward function used in both training and testing.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): List of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
semantic_feat (Tensor, optional): Semantic feature. Defaults to
None.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
"""
bbox_roi_extractor = self.bbox_roi_extractor[stage]
bbox_head = self.bbox_head[stage]
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
rois)
if self.with_semantic and 'bbox' in self.semantic_fusion:
bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat],
rois)
if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]:
bbox_semantic_feat = adaptive_avg_pool2d(
bbox_semantic_feat, bbox_feats.shape[-2:])
bbox_feats += bbox_semantic_feat
cls_score, bbox_pred = bbox_head(bbox_feats)
bbox_results = dict(cls_score=cls_score, bbox_pred=bbox_pred)
return bbox_results
def bbox_loss(self,
stage: int,
x: Tuple[Tensor],
sampling_results: List[SamplingResult],
semantic_feat: Optional[Tensor] = None) -> dict:
"""Run forward function and calculate loss for box head in training.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): List of multi-level img features.
sampling_results (list["obj:`SamplingResult`]): Sampling results.
semantic_feat (Tensor, optional): Semantic feature. Defaults to
None.
Returns:
dict: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
- `loss_bbox` (dict): A dictionary of bbox loss components.
- `rois` (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
- `bbox_targets` (tuple): Ground truth for proposals in a
single image. Containing the following list of Tensors:
(labels, label_weights, bbox_targets, bbox_weights)
"""
bbox_head = self.bbox_head[stage]
rois = bbox2roi([res.priors for res in sampling_results])
bbox_results = self._bbox_forward(
stage, x, rois, semantic_feat=semantic_feat)
bbox_results.update(rois=rois)
bbox_loss_and_target = bbox_head.loss_and_target(
cls_score=bbox_results['cls_score'],
bbox_pred=bbox_results['bbox_pred'],
rois=rois,
sampling_results=sampling_results,
rcnn_train_cfg=self.train_cfg[stage])
bbox_results.update(bbox_loss_and_target)
return bbox_results
def _mask_forward(self,
stage: int,
x: Tuple[Tensor],
rois: Tensor,
semantic_feat: Optional[Tensor] = None,
training: bool = True) -> Dict[str, Tensor]:
"""Mask head forward function used only in training.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): Tuple of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
semantic_feat (Tensor, optional): Semantic feature. Defaults to
None.
training (bool): Mask Forward is different between training and
testing. If True, use the mask forward in training.
Defaults to True.
Returns:
dict: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
"""
mask_roi_extractor = self.mask_roi_extractor[stage]
mask_head = self.mask_head[stage]
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs],
rois)
# semantic feature fusion
# element-wise sum for original features and pooled semantic features
if self.with_semantic and 'mask' in self.semantic_fusion:
mask_semantic_feat = self.semantic_roi_extractor([semantic_feat],
rois)
if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]:
mask_semantic_feat = F.adaptive_avg_pool2d(
mask_semantic_feat, mask_feats.shape[-2:])
mask_feats = mask_feats + mask_semantic_feat
# mask information flow
# forward all previous mask heads to obtain last_feat, and fuse it
# with the normal mask feature
if training:
if self.mask_info_flow:
last_feat = None
for i in range(stage):
last_feat = self.mask_head[i](
mask_feats, last_feat, return_logits=False)
mask_preds = mask_head(
mask_feats, last_feat, return_feat=False)
else:
mask_preds = mask_head(mask_feats, return_feat=False)
mask_results = dict(mask_preds=mask_preds)
else:
aug_masks = []
last_feat = None
for i in range(self.num_stages):
mask_head = self.mask_head[i]
if self.mask_info_flow:
mask_preds, last_feat = mask_head(mask_feats, last_feat)
else:
mask_preds = mask_head(mask_feats)
aug_masks.append(mask_preds)
mask_results = dict(mask_preds=aug_masks)
return mask_results
def mask_loss(self,
stage: int,
x: Tuple[Tensor],
sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList,
semantic_feat: Optional[Tensor] = None) -> dict:
"""Run forward function and calculate loss for mask head in training.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): Tuple of multi-level img features.
sampling_results (list["obj:`SamplingResult`]): Sampling results.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
semantic_feat (Tensor, optional): Semantic feature. Defaults to
None.
Returns:
dict: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
- `loss_mask` (dict): A dictionary of mask loss components.
"""
pos_rois = bbox2roi([res.pos_priors for res in sampling_results])
mask_results = self._mask_forward(
stage=stage,
x=x,
rois=pos_rois,
semantic_feat=semantic_feat,
training=True)
mask_head = self.mask_head[stage]
mask_loss_and_target = mask_head.loss_and_target(
mask_preds=mask_results['mask_preds'],
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=self.train_cfg[stage])
mask_results.update(mask_loss_and_target)
return mask_results
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: SampleList) -> dict:
"""Perform forward propagation and loss calculation of the detection
roi on the features of the upstream network.
Args:
x (tuple[Tensor]): List of multi-level img features.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: A dictionary of loss components
"""
assert len(rpn_results_list) == len(batch_data_samples)
outputs = unpack_gt_instances(batch_data_samples)
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
= outputs
# semantic segmentation part
# 2 outputs: segmentation prediction and embedded features
losses = dict()
if self.with_semantic:
gt_semantic_segs = [
data_sample.gt_sem_seg.sem_seg
for data_sample in batch_data_samples
]
gt_semantic_segs = torch.stack(gt_semantic_segs)
semantic_pred, semantic_feat = self.semantic_head(x)
loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_segs)
losses['loss_semantic_seg'] = loss_seg
else:
semantic_feat = None
results_list = rpn_results_list
num_imgs = len(batch_img_metas)
for stage in range(self.num_stages):
self.current_stage = stage
stage_loss_weight = self.stage_loss_weights[stage]
# assign gts and sample proposals
sampling_results = []
bbox_assigner = self.bbox_assigner[stage]
bbox_sampler = self.bbox_sampler[stage]
for i in range(num_imgs):
results = results_list[i]
# rename rpn_results.bboxes to rpn_results.priors
if 'bboxes' in results:
results.priors = results.pop('bboxes')
assign_result = bbox_assigner.assign(
results, batch_gt_instances[i],
batch_gt_instances_ignore[i])
sampling_result = bbox_sampler.sample(
assign_result,
results,
batch_gt_instances[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
# bbox head forward and loss
bbox_results = self.bbox_loss(
stage=stage,
x=x,
sampling_results=sampling_results,
semantic_feat=semantic_feat)
for name, value in bbox_results['loss_bbox'].items():
losses[f's{stage}.{name}'] = (
value * stage_loss_weight if 'loss' in name else value)
# mask head forward and loss
if self.with_mask:
# interleaved execution: use regressed bboxes by the box branch
# to train the mask branch
if self.interleaved:
bbox_head = self.bbox_head[stage]
with torch.no_grad():
results_list = bbox_head.refine_bboxes(
sampling_results, bbox_results, batch_img_metas)
# re-assign and sample 512 RoIs from 512 RoIs
sampling_results = []
for i in range(num_imgs):
results = results_list[i]
# rename rpn_results.bboxes to rpn_results.priors
results.priors = results.pop('bboxes')
assign_result = bbox_assigner.assign(
results, batch_gt_instances[i],
batch_gt_instances_ignore[i])
sampling_result = bbox_sampler.sample(
assign_result,
results,
batch_gt_instances[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
mask_results = self.mask_loss(
stage=stage,
x=x,
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
semantic_feat=semantic_feat)
for name, value in mask_results['loss_mask'].items():
losses[f's{stage}.{name}'] = (
value * stage_loss_weight if 'loss' in name else value)
# refine bboxes (same as Cascade R-CNN)
if stage < self.num_stages - 1 and not self.interleaved:
bbox_head = self.bbox_head[stage]
with torch.no_grad():
results_list = bbox_head.refine_bboxes(
sampling_results=sampling_results,
bbox_results=bbox_results,
batch_img_metas=batch_img_metas)
return losses
def predict(self,
x: Tuple[Tensor],
rpn_results_list: InstanceList,
batch_data_samples: SampleList,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the roi head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Features from upstream network. Each
has shape (N, C, H, W).
rpn_results_list (list[:obj:`InstanceData`]): list of region
proposals.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool): Whether to rescale the results to
the original image. Defaults to False.
Returns:
list[obj:`InstanceData`]: Detection results of each image.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
assert self.with_bbox, 'Bbox head must be implemented.'
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
if self.with_semantic:
_, semantic_feat = self.semantic_head(x)
else:
semantic_feat = None
# TODO: nms_op in mmcv need be enhanced, the bbox result may get
# difference when not rescale in bbox_head
# If it has the mask branch, the bbox branch does not need
# to be scaled to the original image scale, because the mask
# branch will scale both bbox and mask at the same time.
bbox_rescale = rescale if not self.with_mask else False
results_list = self.predict_bbox(
x=x,
semantic_feat=semantic_feat,
batch_img_metas=batch_img_metas,
rpn_results_list=rpn_results_list,
rcnn_test_cfg=self.test_cfg,
rescale=bbox_rescale)
if self.with_mask:
results_list = self.predict_mask(
x=x,
semantic_heat=semantic_feat,
batch_img_metas=batch_img_metas,
results_list=results_list,
rescale=rescale)
return results_list
def predict_mask(self,
x: Tuple[Tensor],
semantic_heat: Tensor,
batch_img_metas: List[dict],
results_list: InstanceList,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the mask head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
semantic_feat (Tensor): Semantic feature.
batch_img_metas (list[dict]): List of image information.
results_list (list[:obj:`InstanceData`]): Detection results of
each image.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
num_imgs = len(batch_img_metas)
bboxes = [res.bboxes for res in results_list]
mask_rois = bbox2roi(bboxes)
if mask_rois.shape[0] == 0:
results_list = empty_instances(
batch_img_metas=batch_img_metas,
device=mask_rois.device,
task_type='mask',
instance_results=results_list,
mask_thr_binary=self.test_cfg.mask_thr_binary)
return results_list
num_mask_rois_per_img = [len(res) for res in results_list]
mask_results = self._mask_forward(
stage=-1,
x=x,
rois=mask_rois,
semantic_feat=semantic_heat,
training=False)
# split batch mask prediction back to each image
aug_masks = [[
mask.sigmoid().detach()
for mask in mask_preds.split(num_mask_rois_per_img, 0)
] for mask_preds in mask_results['mask_preds']]
merged_masks = []
for i in range(num_imgs):
aug_mask = [mask[i] for mask in aug_masks]
merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i])
merged_masks.append(merged_mask)
results_list = self.mask_head[-1].predict_by_feat(
mask_preds=merged_masks,
results_list=results_list,
batch_img_metas=batch_img_metas,
rcnn_test_cfg=self.test_cfg,
rescale=rescale,
activate_map=True)
return results_list
def forward(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: SampleList) -> tuple:
"""Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
x (List[Tensor]): Multi-level features that may have different
resolutions.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
the meta information of each image and corresponding
annotations.
Returns
tuple: A tuple of features from ``bbox_head`` and ``mask_head``
forward.
"""
results = ()
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
num_imgs = len(batch_img_metas)
if self.with_semantic:
_, semantic_feat = self.semantic_head(x)
else:
semantic_feat = None
proposals = [rpn_results.bboxes for rpn_results in rpn_results_list]
num_proposals_per_img = tuple(len(p) for p in proposals)
rois = bbox2roi(proposals)
# bbox head
if self.with_bbox:
rois, cls_scores, bbox_preds = self._refine_roi(
x=x,
rois=rois,
semantic_feat=semantic_feat,
batch_img_metas=batch_img_metas,
num_proposals_per_img=num_proposals_per_img)
results = results + (cls_scores, bbox_preds)
# mask head
if self.with_mask:
rois = torch.cat(rois)
mask_results = self._mask_forward(
stage=-1,
x=x,
rois=rois,
semantic_feat=semantic_feat,
training=False)
aug_masks = [[
mask.sigmoid().detach()
for mask in mask_preds.split(num_proposals_per_img, 0)
] for mask_preds in mask_results['mask_preds']]
merged_masks = []
for i in range(num_imgs):
aug_mask = [mask[i] for mask in aug_masks]
merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i])
merged_masks.append(merged_mask)
results = results + (merged_masks, )
return results
|