File size: 24,599 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn.functional as F
from torch import Tensor

from mmdet.models.test_time_augs import merge_aug_masks
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import InstanceList, OptConfigType
from ..layers import adaptive_avg_pool2d
from ..task_modules.samplers import SamplingResult
from ..utils import empty_instances, unpack_gt_instances
from .cascade_roi_head import CascadeRoIHead


@MODELS.register_module()
class HybridTaskCascadeRoIHead(CascadeRoIHead):
    """Hybrid task cascade roi head including one bbox head and one mask head.

    https://arxiv.org/abs/1901.07518

    Args:
        num_stages (int): Number of cascade stages.
        stage_loss_weights (list[float]): Loss weight for every stage.
        semantic_roi_extractor (:obj:`ConfigDict` or dict, optional):
            Config of semantic roi extractor. Defaults to None.
        Semantic_head (:obj:`ConfigDict` or dict, optional):
            Config of semantic head. Defaults to None.
        interleaved (bool): Whether to interleaves the box branch and mask
            branch. If True, the mask branch can take the refined bounding
            box predictions. Defaults to True.
        mask_info_flow (bool): Whether to turn on the mask information flow,
            which means that feeding the mask features of the preceding stage
            to the current stage. Defaults to True.
    """

    def __init__(self,
                 num_stages: int,
                 stage_loss_weights: List[float],
                 semantic_roi_extractor: OptConfigType = None,
                 semantic_head: OptConfigType = None,
                 semantic_fusion: Tuple[str] = ('bbox', 'mask'),
                 interleaved: bool = True,
                 mask_info_flow: bool = True,
                 **kwargs) -> None:
        super().__init__(
            num_stages=num_stages,
            stage_loss_weights=stage_loss_weights,
            **kwargs)
        assert self.with_bbox
        assert not self.with_shared_head  # shared head is not supported

        if semantic_head is not None:
            self.semantic_roi_extractor = MODELS.build(semantic_roi_extractor)
            self.semantic_head = MODELS.build(semantic_head)

        self.semantic_fusion = semantic_fusion
        self.interleaved = interleaved
        self.mask_info_flow = mask_info_flow

    # TODO move to base_roi_head later
    @property
    def with_semantic(self) -> bool:
        """bool: whether the head has semantic head"""
        return hasattr(self,
                       'semantic_head') and self.semantic_head is not None

    def _bbox_forward(
            self,
            stage: int,
            x: Tuple[Tensor],
            rois: Tensor,
            semantic_feat: Optional[Tensor] = None) -> Dict[str, Tensor]:
        """Box head forward function used in both training and testing.

        Args:
            stage (int): The current stage in Cascade RoI Head.
            x (tuple[Tensor]): List of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.
            semantic_feat (Tensor, optional): Semantic feature. Defaults to
                None.

        Returns:
             dict[str, Tensor]: Usually returns a dictionary with keys:

                - `cls_score` (Tensor): Classification scores.
                - `bbox_pred` (Tensor): Box energies / deltas.
                - `bbox_feats` (Tensor): Extract bbox RoI features.
        """
        bbox_roi_extractor = self.bbox_roi_extractor[stage]
        bbox_head = self.bbox_head[stage]
        bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                        rois)
        if self.with_semantic and 'bbox' in self.semantic_fusion:
            bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat],
                                                             rois)
            if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]:
                bbox_semantic_feat = adaptive_avg_pool2d(
                    bbox_semantic_feat, bbox_feats.shape[-2:])
            bbox_feats += bbox_semantic_feat
        cls_score, bbox_pred = bbox_head(bbox_feats)

        bbox_results = dict(cls_score=cls_score, bbox_pred=bbox_pred)
        return bbox_results

    def bbox_loss(self,
                  stage: int,
                  x: Tuple[Tensor],
                  sampling_results: List[SamplingResult],
                  semantic_feat: Optional[Tensor] = None) -> dict:
        """Run forward function and calculate loss for box head in training.

        Args:
            stage (int): The current stage in Cascade RoI Head.
            x (tuple[Tensor]): List of multi-level img features.
            sampling_results (list["obj:`SamplingResult`]): Sampling results.
            semantic_feat (Tensor, optional): Semantic feature. Defaults to
                None.

        Returns:
            dict: Usually returns a dictionary with keys:

                - `cls_score` (Tensor): Classification scores.
                - `bbox_pred` (Tensor): Box energies / deltas.
                - `bbox_feats` (Tensor): Extract bbox RoI features.
                - `loss_bbox` (dict): A dictionary of bbox loss components.
                - `rois` (Tensor): RoIs with the shape (n, 5) where the first
                  column indicates batch id of each RoI.
                - `bbox_targets` (tuple):  Ground truth for proposals in a
                  single image. Containing the following list of Tensors:
                  (labels, label_weights, bbox_targets, bbox_weights)
        """
        bbox_head = self.bbox_head[stage]
        rois = bbox2roi([res.priors for res in sampling_results])
        bbox_results = self._bbox_forward(
            stage, x, rois, semantic_feat=semantic_feat)
        bbox_results.update(rois=rois)

        bbox_loss_and_target = bbox_head.loss_and_target(
            cls_score=bbox_results['cls_score'],
            bbox_pred=bbox_results['bbox_pred'],
            rois=rois,
            sampling_results=sampling_results,
            rcnn_train_cfg=self.train_cfg[stage])
        bbox_results.update(bbox_loss_and_target)
        return bbox_results

    def _mask_forward(self,
                      stage: int,
                      x: Tuple[Tensor],
                      rois: Tensor,
                      semantic_feat: Optional[Tensor] = None,
                      training: bool = True) -> Dict[str, Tensor]:
        """Mask head forward function used only in training.

        Args:
            stage (int): The current stage in Cascade RoI Head.
            x (tuple[Tensor]): Tuple of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.
            semantic_feat (Tensor, optional): Semantic feature. Defaults to
                None.
            training (bool): Mask Forward is different between training and
                testing. If True, use the mask forward in training.
                Defaults to True.

        Returns:
            dict: Usually returns a dictionary with keys:

                - `mask_preds` (Tensor): Mask prediction.
        """
        mask_roi_extractor = self.mask_roi_extractor[stage]
        mask_head = self.mask_head[stage]
        mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs],
                                        rois)

        # semantic feature fusion
        # element-wise sum for original features and pooled semantic features
        if self.with_semantic and 'mask' in self.semantic_fusion:
            mask_semantic_feat = self.semantic_roi_extractor([semantic_feat],
                                                             rois)
            if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]:
                mask_semantic_feat = F.adaptive_avg_pool2d(
                    mask_semantic_feat, mask_feats.shape[-2:])
            mask_feats = mask_feats + mask_semantic_feat

        # mask information flow
        # forward all previous mask heads to obtain last_feat, and fuse it
        # with the normal mask feature
        if training:
            if self.mask_info_flow:
                last_feat = None
                for i in range(stage):
                    last_feat = self.mask_head[i](
                        mask_feats, last_feat, return_logits=False)
                mask_preds = mask_head(
                    mask_feats, last_feat, return_feat=False)
            else:
                mask_preds = mask_head(mask_feats, return_feat=False)

            mask_results = dict(mask_preds=mask_preds)
        else:
            aug_masks = []
            last_feat = None
            for i in range(self.num_stages):
                mask_head = self.mask_head[i]
                if self.mask_info_flow:
                    mask_preds, last_feat = mask_head(mask_feats, last_feat)
                else:
                    mask_preds = mask_head(mask_feats)
            aug_masks.append(mask_preds)

            mask_results = dict(mask_preds=aug_masks)

        return mask_results

    def mask_loss(self,
                  stage: int,
                  x: Tuple[Tensor],
                  sampling_results: List[SamplingResult],
                  batch_gt_instances: InstanceList,
                  semantic_feat: Optional[Tensor] = None) -> dict:
        """Run forward function and calculate loss for mask head in training.

        Args:
            stage (int): The current stage in Cascade RoI Head.
            x (tuple[Tensor]): Tuple of multi-level img features.
            sampling_results (list["obj:`SamplingResult`]): Sampling results.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``labels``, and
                ``masks`` attributes.
            semantic_feat (Tensor, optional): Semantic feature. Defaults to
                None.

        Returns:
            dict: Usually returns a dictionary with keys:

                - `mask_preds` (Tensor): Mask prediction.
                - `loss_mask` (dict): A dictionary of mask loss components.
        """
        pos_rois = bbox2roi([res.pos_priors for res in sampling_results])
        mask_results = self._mask_forward(
            stage=stage,
            x=x,
            rois=pos_rois,
            semantic_feat=semantic_feat,
            training=True)

        mask_head = self.mask_head[stage]
        mask_loss_and_target = mask_head.loss_and_target(
            mask_preds=mask_results['mask_preds'],
            sampling_results=sampling_results,
            batch_gt_instances=batch_gt_instances,
            rcnn_train_cfg=self.train_cfg[stage])
        mask_results.update(mask_loss_and_target)

        return mask_results

    def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
             batch_data_samples: SampleList) -> dict:
        """Perform forward propagation and loss calculation of the detection
        roi on the features of the upstream network.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns:
            dict[str, Tensor]: A dictionary of loss components
        """
        assert len(rpn_results_list) == len(batch_data_samples)
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
            = outputs

        # semantic segmentation part
        # 2 outputs: segmentation prediction and embedded features
        losses = dict()
        if self.with_semantic:
            gt_semantic_segs = [
                data_sample.gt_sem_seg.sem_seg
                for data_sample in batch_data_samples
            ]
            gt_semantic_segs = torch.stack(gt_semantic_segs)
            semantic_pred, semantic_feat = self.semantic_head(x)
            loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_segs)
            losses['loss_semantic_seg'] = loss_seg
        else:
            semantic_feat = None

        results_list = rpn_results_list
        num_imgs = len(batch_img_metas)
        for stage in range(self.num_stages):
            self.current_stage = stage

            stage_loss_weight = self.stage_loss_weights[stage]

            # assign gts and sample proposals
            sampling_results = []
            bbox_assigner = self.bbox_assigner[stage]
            bbox_sampler = self.bbox_sampler[stage]
            for i in range(num_imgs):
                results = results_list[i]
                # rename rpn_results.bboxes to rpn_results.priors
                if 'bboxes' in results:
                    results.priors = results.pop('bboxes')

                assign_result = bbox_assigner.assign(
                    results, batch_gt_instances[i],
                    batch_gt_instances_ignore[i])
                sampling_result = bbox_sampler.sample(
                    assign_result,
                    results,
                    batch_gt_instances[i],
                    feats=[lvl_feat[i][None] for lvl_feat in x])
                sampling_results.append(sampling_result)

            # bbox head forward and loss
            bbox_results = self.bbox_loss(
                stage=stage,
                x=x,
                sampling_results=sampling_results,
                semantic_feat=semantic_feat)

            for name, value in bbox_results['loss_bbox'].items():
                losses[f's{stage}.{name}'] = (
                    value * stage_loss_weight if 'loss' in name else value)

            # mask head forward and loss
            if self.with_mask:
                # interleaved execution: use regressed bboxes by the box branch
                # to train the mask branch
                if self.interleaved:
                    bbox_head = self.bbox_head[stage]
                    with torch.no_grad():
                        results_list = bbox_head.refine_bboxes(
                            sampling_results, bbox_results, batch_img_metas)
                        # re-assign and sample 512 RoIs from 512 RoIs
                        sampling_results = []
                        for i in range(num_imgs):
                            results = results_list[i]
                            # rename rpn_results.bboxes to rpn_results.priors
                            results.priors = results.pop('bboxes')
                            assign_result = bbox_assigner.assign(
                                results, batch_gt_instances[i],
                                batch_gt_instances_ignore[i])
                            sampling_result = bbox_sampler.sample(
                                assign_result,
                                results,
                                batch_gt_instances[i],
                                feats=[lvl_feat[i][None] for lvl_feat in x])
                            sampling_results.append(sampling_result)
                mask_results = self.mask_loss(
                    stage=stage,
                    x=x,
                    sampling_results=sampling_results,
                    batch_gt_instances=batch_gt_instances,
                    semantic_feat=semantic_feat)
                for name, value in mask_results['loss_mask'].items():
                    losses[f's{stage}.{name}'] = (
                        value * stage_loss_weight if 'loss' in name else value)

            # refine bboxes (same as Cascade R-CNN)
            if stage < self.num_stages - 1 and not self.interleaved:
                bbox_head = self.bbox_head[stage]
                with torch.no_grad():
                    results_list = bbox_head.refine_bboxes(
                        sampling_results=sampling_results,
                        bbox_results=bbox_results,
                        batch_img_metas=batch_img_metas)

        return losses

    def predict(self,
                x: Tuple[Tensor],
                rpn_results_list: InstanceList,
                batch_data_samples: SampleList,
                rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the roi head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Features from upstream network. Each
                has shape (N, C, H, W).
            rpn_results_list (list[:obj:`InstanceData`]): list of region
                proposals.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool): Whether to rescale the results to
                the original image. Defaults to False.

        Returns:
            list[obj:`InstanceData`]: Detection results of each image.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                    (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                    (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                    the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, H, W).
        """
        assert self.with_bbox, 'Bbox head must be implemented.'
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]

        if self.with_semantic:
            _, semantic_feat = self.semantic_head(x)
        else:
            semantic_feat = None

        # TODO: nms_op in mmcv need be enhanced, the bbox result may get
        #  difference when not rescale in bbox_head

        # If it has the mask branch, the bbox branch does not need
        # to be scaled to the original image scale, because the mask
        # branch will scale both bbox and mask at the same time.
        bbox_rescale = rescale if not self.with_mask else False
        results_list = self.predict_bbox(
            x=x,
            semantic_feat=semantic_feat,
            batch_img_metas=batch_img_metas,
            rpn_results_list=rpn_results_list,
            rcnn_test_cfg=self.test_cfg,
            rescale=bbox_rescale)

        if self.with_mask:
            results_list = self.predict_mask(
                x=x,
                semantic_heat=semantic_feat,
                batch_img_metas=batch_img_metas,
                results_list=results_list,
                rescale=rescale)

        return results_list

    def predict_mask(self,
                     x: Tuple[Tensor],
                     semantic_heat: Tensor,
                     batch_img_metas: List[dict],
                     results_list: InstanceList,
                     rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the mask head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            semantic_feat (Tensor): Semantic feature.
            batch_img_metas (list[dict]): List of image information.
            results_list (list[:obj:`InstanceData`]): Detection results of
                each image.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, H, W).
        """
        num_imgs = len(batch_img_metas)
        bboxes = [res.bboxes for res in results_list]
        mask_rois = bbox2roi(bboxes)
        if mask_rois.shape[0] == 0:
            results_list = empty_instances(
                batch_img_metas=batch_img_metas,
                device=mask_rois.device,
                task_type='mask',
                instance_results=results_list,
                mask_thr_binary=self.test_cfg.mask_thr_binary)
            return results_list

        num_mask_rois_per_img = [len(res) for res in results_list]
        mask_results = self._mask_forward(
            stage=-1,
            x=x,
            rois=mask_rois,
            semantic_feat=semantic_heat,
            training=False)
        # split batch mask prediction back to each image
        aug_masks = [[
            mask.sigmoid().detach()
            for mask in mask_preds.split(num_mask_rois_per_img, 0)
        ] for mask_preds in mask_results['mask_preds']]

        merged_masks = []
        for i in range(num_imgs):
            aug_mask = [mask[i] for mask in aug_masks]
            merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i])
            merged_masks.append(merged_mask)

        results_list = self.mask_head[-1].predict_by_feat(
            mask_preds=merged_masks,
            results_list=results_list,
            batch_img_metas=batch_img_metas,
            rcnn_test_cfg=self.test_cfg,
            rescale=rescale,
            activate_map=True)

        return results_list

    def forward(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
                batch_data_samples: SampleList) -> tuple:
        """Network forward process. Usually includes backbone, neck and head
        forward without any post-processing.

        Args:
            x (List[Tensor]): Multi-level features that may have different
                resolutions.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
                the meta information of each image and corresponding
                annotations.

        Returns
            tuple: A tuple of features from ``bbox_head`` and ``mask_head``
            forward.
        """
        results = ()
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]
        num_imgs = len(batch_img_metas)

        if self.with_semantic:
            _, semantic_feat = self.semantic_head(x)
        else:
            semantic_feat = None

        proposals = [rpn_results.bboxes for rpn_results in rpn_results_list]
        num_proposals_per_img = tuple(len(p) for p in proposals)
        rois = bbox2roi(proposals)
        # bbox head
        if self.with_bbox:
            rois, cls_scores, bbox_preds = self._refine_roi(
                x=x,
                rois=rois,
                semantic_feat=semantic_feat,
                batch_img_metas=batch_img_metas,
                num_proposals_per_img=num_proposals_per_img)
            results = results + (cls_scores, bbox_preds)
        # mask head
        if self.with_mask:
            rois = torch.cat(rois)
            mask_results = self._mask_forward(
                stage=-1,
                x=x,
                rois=rois,
                semantic_feat=semantic_feat,
                training=False)
            aug_masks = [[
                mask.sigmoid().detach()
                for mask in mask_preds.split(num_proposals_per_img, 0)
            ] for mask_preds in mask_results['mask_preds']]

            merged_masks = []
            for i in range(num_imgs):
                aug_mask = [mask[i] for mask in aug_masks]
                merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i])
                merged_masks.append(merged_mask)
            results = results + (merged_masks, )
        return results