Spaces:
Runtime error
Runtime error
File size: 25,779 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, Tuple
import torch
import torch.nn.functional as F
from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention
from mmengine.model import xavier_init
from torch import Tensor, nn
from torch.nn.init import normal_
from mmdet.registry import MODELS
from mmdet.structures import OptSampleList
from mmdet.utils import OptConfigType
from ..layers import (DeformableDetrTransformerDecoder,
DeformableDetrTransformerEncoder, SinePositionalEncoding)
from .base_detr import DetectionTransformer
@MODELS.register_module()
class DeformableDETR(DetectionTransformer):
r"""Implementation of `Deformable DETR: Deformable Transformers for
End-to-End Object Detection <https://arxiv.org/abs/2010.04159>`_
Code is modified from the `official github repo
<https://github.com/fundamentalvision/Deformable-DETR>`_.
Args:
decoder (:obj:`ConfigDict` or dict, optional): Config of the
Transformer decoder. Defaults to None.
bbox_head (:obj:`ConfigDict` or dict, optional): Config for the
bounding box head module. Defaults to None.
with_box_refine (bool, optional): Whether to refine the references
in the decoder. Defaults to `False`.
as_two_stage (bool, optional): Whether to generate the proposal
from the outputs of encoder. Defaults to `False`.
num_feature_levels (int, optional): Number of feature levels.
Defaults to 4.
"""
def __init__(self,
*args,
decoder: OptConfigType = None,
bbox_head: OptConfigType = None,
with_box_refine: bool = False,
as_two_stage: bool = False,
num_feature_levels: int = 4,
**kwargs) -> None:
self.with_box_refine = with_box_refine
self.as_two_stage = as_two_stage
self.num_feature_levels = num_feature_levels
if bbox_head is not None:
assert 'share_pred_layer' not in bbox_head and \
'num_pred_layer' not in bbox_head and \
'as_two_stage' not in bbox_head, \
'The two keyword args `share_pred_layer`, `num_pred_layer`, ' \
'and `as_two_stage are set in `detector.__init__()`, users ' \
'should not set them in `bbox_head` config.'
# The last prediction layer is used to generate proposal
# from encode feature map when `as_two_stage` is `True`.
# And all the prediction layers should share parameters
# when `with_box_refine` is `True`.
bbox_head['share_pred_layer'] = not with_box_refine
bbox_head['num_pred_layer'] = (decoder['num_layers'] + 1) \
if self.as_two_stage else decoder['num_layers']
bbox_head['as_two_stage'] = as_two_stage
super().__init__(*args, decoder=decoder, bbox_head=bbox_head, **kwargs)
def _init_layers(self) -> None:
"""Initialize layers except for backbone, neck and bbox_head."""
self.positional_encoding = SinePositionalEncoding(
**self.positional_encoding)
self.encoder = DeformableDetrTransformerEncoder(**self.encoder)
self.decoder = DeformableDetrTransformerDecoder(**self.decoder)
self.embed_dims = self.encoder.embed_dims
if not self.as_two_stage:
self.query_embedding = nn.Embedding(self.num_queries,
self.embed_dims * 2)
# NOTE The query_embedding will be split into query and query_pos
# in self.pre_decoder, hence, the embed_dims are doubled.
num_feats = self.positional_encoding.num_feats
assert num_feats * 2 == self.embed_dims, \
'embed_dims should be exactly 2 times of num_feats. ' \
f'Found {self.embed_dims} and {num_feats}.'
self.level_embed = nn.Parameter(
torch.Tensor(self.num_feature_levels, self.embed_dims))
if self.as_two_stage:
self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
self.memory_trans_norm = nn.LayerNorm(self.embed_dims)
self.pos_trans_fc = nn.Linear(self.embed_dims * 2,
self.embed_dims * 2)
self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2)
else:
self.reference_points_fc = nn.Linear(self.embed_dims, 2)
def init_weights(self) -> None:
"""Initialize weights for Transformer and other components."""
super().init_weights()
for coder in self.encoder, self.decoder:
for p in coder.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MultiScaleDeformableAttention):
m.init_weights()
if self.as_two_stage:
nn.init.xavier_uniform_(self.memory_trans_fc.weight)
nn.init.xavier_uniform_(self.pos_trans_fc.weight)
else:
xavier_init(
self.reference_points_fc, distribution='uniform', bias=0.)
normal_(self.level_embed)
def pre_transformer(
self,
mlvl_feats: Tuple[Tensor],
batch_data_samples: OptSampleList = None) -> Tuple[Dict]:
"""Process image features before feeding them to the transformer.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
mlvl_feats (tuple[Tensor]): Multi-level features that may have
different resolutions, output from neck. Each feature has
shape (bs, dim, h_lvl, w_lvl), where 'lvl' means 'layer'.
batch_data_samples (list[:obj:`DetDataSample`], optional): The
batch data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Defaults to None.
Returns:
tuple[dict]: The first dict contains the inputs of encoder and the
second dict contains the inputs of decoder.
- encoder_inputs_dict (dict): The keyword args dictionary of
`self.forward_encoder()`, which includes 'feat', 'feat_mask',
and 'feat_pos'.
- decoder_inputs_dict (dict): The keyword args dictionary of
`self.forward_decoder()`, which includes 'memory_mask'.
"""
batch_size = mlvl_feats[0].size(0)
# construct binary masks for the transformer.
assert batch_data_samples is not None
batch_input_shape = batch_data_samples[0].batch_input_shape
img_shape_list = [sample.img_shape for sample in batch_data_samples]
input_img_h, input_img_w = batch_input_shape
masks = mlvl_feats[0].new_ones((batch_size, input_img_h, input_img_w))
for img_id in range(batch_size):
img_h, img_w = img_shape_list[img_id]
masks[img_id, :img_h, :img_w] = 0
# NOTE following the official DETR repo, non-zero values representing
# ignored positions, while zero values means valid positions.
mlvl_masks = []
mlvl_pos_embeds = []
for feat in mlvl_feats:
mlvl_masks.append(
F.interpolate(masks[None],
size=feat.shape[-2:]).to(torch.bool).squeeze(0))
mlvl_pos_embeds.append(self.positional_encoding(mlvl_masks[-1]))
feat_flatten = []
lvl_pos_embed_flatten = []
mask_flatten = []
spatial_shapes = []
for lvl, (feat, mask, pos_embed) in enumerate(
zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
batch_size, c, h, w = feat.shape
# [bs, c, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl, c]
feat = feat.view(batch_size, c, -1).permute(0, 2, 1)
pos_embed = pos_embed.view(batch_size, c, -1).permute(0, 2, 1)
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
# [bs, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl]
mask = mask.flatten(1)
spatial_shape = (h, w)
feat_flatten.append(feat)
lvl_pos_embed_flatten.append(lvl_pos_embed)
mask_flatten.append(mask)
spatial_shapes.append(spatial_shape)
# (bs, num_feat_points, dim)
feat_flatten = torch.cat(feat_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
# (bs, num_feat_points), where num_feat_points = sum_lvl(h_lvl*w_lvl)
mask_flatten = torch.cat(mask_flatten, 1)
spatial_shapes = torch.as_tensor( # (num_level, 2)
spatial_shapes,
dtype=torch.long,
device=feat_flatten.device)
level_start_index = torch.cat((
spatial_shapes.new_zeros((1, )), # (num_level)
spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack( # (bs, num_level, 2)
[self.get_valid_ratio(m) for m in mlvl_masks], 1)
encoder_inputs_dict = dict(
feat=feat_flatten,
feat_mask=mask_flatten,
feat_pos=lvl_pos_embed_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios)
decoder_inputs_dict = dict(
memory_mask=mask_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios)
return encoder_inputs_dict, decoder_inputs_dict
def forward_encoder(self, feat: Tensor, feat_mask: Tensor,
feat_pos: Tensor, spatial_shapes: Tensor,
level_start_index: Tensor,
valid_ratios: Tensor) -> Dict:
"""Forward with Transformer encoder.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
feat (Tensor): Sequential features, has shape (bs, num_feat_points,
dim).
feat_mask (Tensor): ByteTensor, the padding mask of the features,
has shape (bs, num_feat_points).
feat_pos (Tensor): The positional embeddings of the features, has
shape (bs, num_feat_points, dim).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
Returns:
dict: The dictionary of encoder outputs, which includes the
`memory` of the encoder output.
"""
memory = self.encoder(
query=feat,
query_pos=feat_pos,
key_padding_mask=feat_mask, # for self_attn
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios)
encoder_outputs_dict = dict(
memory=memory,
memory_mask=feat_mask,
spatial_shapes=spatial_shapes)
return encoder_outputs_dict
def pre_decoder(self, memory: Tensor, memory_mask: Tensor,
spatial_shapes: Tensor) -> Tuple[Dict, Dict]:
"""Prepare intermediate variables before entering Transformer decoder,
such as `query`, `query_pos`, and `reference_points`.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points). It will only be used when
`as_two_stage` is `True`.
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
It will only be used when `as_two_stage` is `True`.
Returns:
tuple[dict, dict]: The decoder_inputs_dict and head_inputs_dict.
- decoder_inputs_dict (dict): The keyword dictionary args of
`self.forward_decoder()`, which includes 'query', 'query_pos',
'memory', and `reference_points`. The reference_points of
decoder input here are 4D boxes when `as_two_stage` is `True`,
otherwise 2D points, although it has `points` in its name.
The reference_points in encoder is always 2D points.
- head_inputs_dict (dict): The keyword dictionary args of the
bbox_head functions, which includes `enc_outputs_class` and
`enc_outputs_coord`. They are both `None` when 'as_two_stage'
is `False`. The dict is empty when `self.training` is `False`.
"""
batch_size, _, c = memory.shape
if self.as_two_stage:
output_memory, output_proposals = \
self.gen_encoder_output_proposals(
memory, memory_mask, spatial_shapes)
enc_outputs_class = self.bbox_head.cls_branches[
self.decoder.num_layers](
output_memory)
enc_outputs_coord_unact = self.bbox_head.reg_branches[
self.decoder.num_layers](output_memory) + output_proposals
enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
# We only use the first channel in enc_outputs_class as foreground,
# the other (num_classes - 1) channels are actually not used.
# Its targets are set to be 0s, which indicates the first
# class (foreground) because we use [0, num_classes - 1] to
# indicate class labels, background class is indicated by
# num_classes (similar convention in RPN).
# See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa
# This follows the official implementation of Deformable DETR.
topk_proposals = torch.topk(
enc_outputs_class[..., 0], self.num_queries, dim=1)[1]
topk_coords_unact = torch.gather(
enc_outputs_coord_unact, 1,
topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
topk_coords_unact = topk_coords_unact.detach()
reference_points = topk_coords_unact.sigmoid()
pos_trans_out = self.pos_trans_fc(
self.get_proposal_pos_embed(topk_coords_unact))
pos_trans_out = self.pos_trans_norm(pos_trans_out)
query_pos, query = torch.split(pos_trans_out, c, dim=2)
else:
enc_outputs_class, enc_outputs_coord = None, None
query_embed = self.query_embedding.weight
query_pos, query = torch.split(query_embed, c, dim=1)
query_pos = query_pos.unsqueeze(0).expand(batch_size, -1, -1)
query = query.unsqueeze(0).expand(batch_size, -1, -1)
reference_points = self.reference_points_fc(query_pos).sigmoid()
decoder_inputs_dict = dict(
query=query,
query_pos=query_pos,
memory=memory,
reference_points=reference_points)
head_inputs_dict = dict(
enc_outputs_class=enc_outputs_class,
enc_outputs_coord=enc_outputs_coord) if self.training else dict()
return decoder_inputs_dict, head_inputs_dict
def forward_decoder(self, query: Tensor, query_pos: Tensor, memory: Tensor,
memory_mask: Tensor, reference_points: Tensor,
spatial_shapes: Tensor, level_start_index: Tensor,
valid_ratios: Tensor) -> Dict:
"""Forward with Transformer decoder.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
query (Tensor): The queries of decoder inputs, has shape
(bs, num_queries, dim).
query_pos (Tensor): The positional queries of decoder inputs,
has shape (bs, num_queries, dim).
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points).
reference_points (Tensor): The initial reference, has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h) when `as_two_stage` is `True`, otherwise has
shape (bs, num_queries, 2) with the last dimension arranged as
(cx, cy).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
Returns:
dict: The dictionary of decoder outputs, which includes the
`hidden_states` of the decoder output and `references` including
the initial and intermediate reference_points.
"""
inter_states, inter_references = self.decoder(
query=query,
value=memory,
query_pos=query_pos,
key_padding_mask=memory_mask, # for cross_attn
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reg_branches=self.bbox_head.reg_branches
if self.with_box_refine else None)
references = [reference_points, *inter_references]
decoder_outputs_dict = dict(
hidden_states=inter_states, references=references)
return decoder_outputs_dict
@staticmethod
def get_valid_ratio(mask: Tensor) -> Tensor:
"""Get the valid radios of feature map in a level.
.. code:: text
|---> valid_W <---|
---+-----------------+-----+---
A | | | A
| | | | |
| | | | |
valid_H | | | |
| | | | H
| | | | |
V | | | |
---+-----------------+ | |
| | V
+-----------------------+---
|---------> W <---------|
The valid_ratios are defined as:
r_h = valid_H / H, r_w = valid_W / W
They are the factors to re-normalize the relative coordinates of the
image to the relative coordinates of the current level feature map.
Args:
mask (Tensor): Binary mask of a feature map, has shape (bs, H, W).
Returns:
Tensor: valid ratios [r_w, r_h] of a feature map, has shape (1, 2).
"""
_, H, W = mask.shape
valid_H = torch.sum(~mask[:, :, 0], 1)
valid_W = torch.sum(~mask[:, 0, :], 1)
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
return valid_ratio
def gen_encoder_output_proposals(
self, memory: Tensor, memory_mask: Tensor,
spatial_shapes: Tensor) -> Tuple[Tensor, Tensor]:
"""Generate proposals from encoded memory. The function will only be
used when `as_two_stage` is `True`.
Args:
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
Returns:
tuple: A tuple of transformed memory and proposals.
- output_memory (Tensor): The transformed memory for obtaining
top-k proposals, has shape (bs, num_feat_points, dim).
- output_proposals (Tensor): The inverse-normalized proposal, has
shape (batch_size, num_keys, 4) with the last dimension arranged
as (cx, cy, w, h).
"""
bs = memory.size(0)
proposals = []
_cur = 0 # start index in the sequence of the current level
for lvl, (H, W) in enumerate(spatial_shapes):
mask_flatten_ = memory_mask[:,
_cur:(_cur + H * W)].view(bs, H, W, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1).unsqueeze(-1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1).unsqueeze(-1)
grid_y, grid_x = torch.meshgrid(
torch.linspace(
0, H - 1, H, dtype=torch.float32, device=memory.device),
torch.linspace(
0, W - 1, W, dtype=torch.float32, device=memory.device))
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
scale = torch.cat([valid_W, valid_H], 1).view(bs, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(bs, -1, -1, -1) + 0.5) / scale
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
proposal = torch.cat((grid, wh), -1).view(bs, -1, 4)
proposals.append(proposal)
_cur += (H * W)
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) &
(output_proposals < 0.99)).all(
-1, keepdim=True)
# inverse_sigmoid
output_proposals = torch.log(output_proposals / (1 - output_proposals))
output_proposals = output_proposals.masked_fill(
memory_mask.unsqueeze(-1), float('inf'))
output_proposals = output_proposals.masked_fill(
~output_proposals_valid, float('inf'))
output_memory = memory
output_memory = output_memory.masked_fill(
memory_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid,
float(0))
output_memory = self.memory_trans_fc(output_memory)
output_memory = self.memory_trans_norm(output_memory)
# [bs, sum(hw), 2]
return output_memory, output_proposals
@staticmethod
def get_proposal_pos_embed(proposals: Tensor,
num_pos_feats: int = 128,
temperature: int = 10000) -> Tensor:
"""Get the position embedding of the proposal.
Args:
proposals (Tensor): Not normalized proposals, has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
num_pos_feats (int, optional): The feature dimension for each
position along x, y, w, and h-axis. Note the final returned
dimension for each position is 4 times of num_pos_feats.
Default to 128.
temperature (int, optional): The temperature used for scaling the
position embedding. Defaults to 10000.
Returns:
Tensor: The position embedding of proposal, has shape
(bs, num_queries, num_pos_feats * 4), with the last dimension
arranged as (cx, cy, w, h)
"""
scale = 2 * math.pi
dim_t = torch.arange(
num_pos_feats, dtype=torch.float32, device=proposals.device)
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
# N, L, 4
proposals = proposals.sigmoid() * scale
# N, L, 4, 128
pos = proposals[:, :, :, None] / dim_t
# N, L, 4, 64, 2
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()),
dim=4).flatten(2)
return pos
|