File size: 25,779 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, Tuple

import torch
import torch.nn.functional as F
from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention
from mmengine.model import xavier_init
from torch import Tensor, nn
from torch.nn.init import normal_

from mmdet.registry import MODELS
from mmdet.structures import OptSampleList
from mmdet.utils import OptConfigType
from ..layers import (DeformableDetrTransformerDecoder,
                      DeformableDetrTransformerEncoder, SinePositionalEncoding)
from .base_detr import DetectionTransformer


@MODELS.register_module()
class DeformableDETR(DetectionTransformer):
    r"""Implementation of `Deformable DETR: Deformable Transformers for
    End-to-End Object Detection <https://arxiv.org/abs/2010.04159>`_

    Code is modified from the `official github repo
    <https://github.com/fundamentalvision/Deformable-DETR>`_.

    Args:
        decoder (:obj:`ConfigDict` or dict, optional): Config of the
            Transformer decoder. Defaults to None.
        bbox_head (:obj:`ConfigDict` or dict, optional): Config for the
            bounding box head module. Defaults to None.
        with_box_refine (bool, optional): Whether to refine the references
            in the decoder. Defaults to `False`.
        as_two_stage (bool, optional): Whether to generate the proposal
            from the outputs of encoder. Defaults to `False`.
        num_feature_levels (int, optional): Number of feature levels.
            Defaults to 4.
    """

    def __init__(self,
                 *args,
                 decoder: OptConfigType = None,
                 bbox_head: OptConfigType = None,
                 with_box_refine: bool = False,
                 as_two_stage: bool = False,
                 num_feature_levels: int = 4,
                 **kwargs) -> None:
        self.with_box_refine = with_box_refine
        self.as_two_stage = as_two_stage
        self.num_feature_levels = num_feature_levels

        if bbox_head is not None:
            assert 'share_pred_layer' not in bbox_head and \
                   'num_pred_layer' not in bbox_head and \
                   'as_two_stage' not in bbox_head, \
                'The two keyword args `share_pred_layer`, `num_pred_layer`, ' \
                'and `as_two_stage are set in `detector.__init__()`, users ' \
                'should not set them in `bbox_head` config.'
            # The last prediction layer is used to generate proposal
            # from encode feature map when `as_two_stage` is `True`.
            # And all the prediction layers should share parameters
            # when `with_box_refine` is `True`.
            bbox_head['share_pred_layer'] = not with_box_refine
            bbox_head['num_pred_layer'] = (decoder['num_layers'] + 1) \
                if self.as_two_stage else decoder['num_layers']
            bbox_head['as_two_stage'] = as_two_stage

        super().__init__(*args, decoder=decoder, bbox_head=bbox_head, **kwargs)

    def _init_layers(self) -> None:
        """Initialize layers except for backbone, neck and bbox_head."""
        self.positional_encoding = SinePositionalEncoding(
            **self.positional_encoding)
        self.encoder = DeformableDetrTransformerEncoder(**self.encoder)
        self.decoder = DeformableDetrTransformerDecoder(**self.decoder)
        self.embed_dims = self.encoder.embed_dims
        if not self.as_two_stage:
            self.query_embedding = nn.Embedding(self.num_queries,
                                                self.embed_dims * 2)
            # NOTE The query_embedding will be split into query and query_pos
            # in self.pre_decoder, hence, the embed_dims are doubled.

        num_feats = self.positional_encoding.num_feats
        assert num_feats * 2 == self.embed_dims, \
            'embed_dims should be exactly 2 times of num_feats. ' \
            f'Found {self.embed_dims} and {num_feats}.'

        self.level_embed = nn.Parameter(
            torch.Tensor(self.num_feature_levels, self.embed_dims))

        if self.as_two_stage:
            self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
            self.memory_trans_norm = nn.LayerNorm(self.embed_dims)
            self.pos_trans_fc = nn.Linear(self.embed_dims * 2,
                                          self.embed_dims * 2)
            self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2)
        else:
            self.reference_points_fc = nn.Linear(self.embed_dims, 2)

    def init_weights(self) -> None:
        """Initialize weights for Transformer and other components."""
        super().init_weights()
        for coder in self.encoder, self.decoder:
            for p in coder.parameters():
                if p.dim() > 1:
                    nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MultiScaleDeformableAttention):
                m.init_weights()
        if self.as_two_stage:
            nn.init.xavier_uniform_(self.memory_trans_fc.weight)
            nn.init.xavier_uniform_(self.pos_trans_fc.weight)
        else:
            xavier_init(
                self.reference_points_fc, distribution='uniform', bias=0.)
        normal_(self.level_embed)

    def pre_transformer(
            self,
            mlvl_feats: Tuple[Tensor],
            batch_data_samples: OptSampleList = None) -> Tuple[Dict]:
        """Process image features before feeding them to the transformer.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.

        Args:
            mlvl_feats (tuple[Tensor]): Multi-level features that may have
                different resolutions, output from neck. Each feature has
                shape (bs, dim, h_lvl, w_lvl), where 'lvl' means 'layer'.
            batch_data_samples (list[:obj:`DetDataSample`], optional): The
                batch data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
                Defaults to None.

        Returns:
            tuple[dict]: The first dict contains the inputs of encoder and the
            second dict contains the inputs of decoder.

            - encoder_inputs_dict (dict): The keyword args dictionary of
              `self.forward_encoder()`, which includes 'feat', 'feat_mask',
              and 'feat_pos'.
            - decoder_inputs_dict (dict): The keyword args dictionary of
              `self.forward_decoder()`, which includes 'memory_mask'.
        """
        batch_size = mlvl_feats[0].size(0)

        # construct binary masks for the transformer.
        assert batch_data_samples is not None
        batch_input_shape = batch_data_samples[0].batch_input_shape
        img_shape_list = [sample.img_shape for sample in batch_data_samples]
        input_img_h, input_img_w = batch_input_shape
        masks = mlvl_feats[0].new_ones((batch_size, input_img_h, input_img_w))
        for img_id in range(batch_size):
            img_h, img_w = img_shape_list[img_id]
            masks[img_id, :img_h, :img_w] = 0
        # NOTE following the official DETR repo, non-zero values representing
        # ignored positions, while zero values means valid positions.

        mlvl_masks = []
        mlvl_pos_embeds = []
        for feat in mlvl_feats:
            mlvl_masks.append(
                F.interpolate(masks[None],
                              size=feat.shape[-2:]).to(torch.bool).squeeze(0))
            mlvl_pos_embeds.append(self.positional_encoding(mlvl_masks[-1]))

        feat_flatten = []
        lvl_pos_embed_flatten = []
        mask_flatten = []
        spatial_shapes = []
        for lvl, (feat, mask, pos_embed) in enumerate(
                zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
            batch_size, c, h, w = feat.shape
            # [bs, c, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl, c]
            feat = feat.view(batch_size, c, -1).permute(0, 2, 1)
            pos_embed = pos_embed.view(batch_size, c, -1).permute(0, 2, 1)
            lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
            # [bs, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl]
            mask = mask.flatten(1)
            spatial_shape = (h, w)

            feat_flatten.append(feat)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            mask_flatten.append(mask)
            spatial_shapes.append(spatial_shape)

        # (bs, num_feat_points, dim)
        feat_flatten = torch.cat(feat_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        # (bs, num_feat_points), where num_feat_points = sum_lvl(h_lvl*w_lvl)
        mask_flatten = torch.cat(mask_flatten, 1)

        spatial_shapes = torch.as_tensor(  # (num_level, 2)
            spatial_shapes,
            dtype=torch.long,
            device=feat_flatten.device)
        level_start_index = torch.cat((
            spatial_shapes.new_zeros((1, )),  # (num_level)
            spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack(  # (bs, num_level, 2)
            [self.get_valid_ratio(m) for m in mlvl_masks], 1)

        encoder_inputs_dict = dict(
            feat=feat_flatten,
            feat_mask=mask_flatten,
            feat_pos=lvl_pos_embed_flatten,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios)
        decoder_inputs_dict = dict(
            memory_mask=mask_flatten,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios)
        return encoder_inputs_dict, decoder_inputs_dict

    def forward_encoder(self, feat: Tensor, feat_mask: Tensor,
                        feat_pos: Tensor, spatial_shapes: Tensor,
                        level_start_index: Tensor,
                        valid_ratios: Tensor) -> Dict:
        """Forward with Transformer encoder.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.

        Args:
            feat (Tensor): Sequential features, has shape (bs, num_feat_points,
                dim).
            feat_mask (Tensor): ByteTensor, the padding mask of the features,
                has shape (bs, num_feat_points).
            feat_pos (Tensor): The positional embeddings of the features, has
                shape (bs, num_feat_points, dim).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels, ) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).

        Returns:
            dict: The dictionary of encoder outputs, which includes the
            `memory` of the encoder output.
        """
        memory = self.encoder(
            query=feat,
            query_pos=feat_pos,
            key_padding_mask=feat_mask,  # for self_attn
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios)
        encoder_outputs_dict = dict(
            memory=memory,
            memory_mask=feat_mask,
            spatial_shapes=spatial_shapes)
        return encoder_outputs_dict

    def pre_decoder(self, memory: Tensor, memory_mask: Tensor,
                    spatial_shapes: Tensor) -> Tuple[Dict, Dict]:
        """Prepare intermediate variables before entering Transformer decoder,
        such as `query`, `query_pos`, and `reference_points`.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.

        Args:
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).
            memory_mask (Tensor): ByteTensor, the padding mask of the memory,
                has shape (bs, num_feat_points). It will only be used when
                `as_two_stage` is `True`.
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
                It will only be used when `as_two_stage` is `True`.

        Returns:
            tuple[dict, dict]: The decoder_inputs_dict and head_inputs_dict.

            - decoder_inputs_dict (dict): The keyword dictionary args of
              `self.forward_decoder()`, which includes 'query', 'query_pos',
              'memory', and `reference_points`. The reference_points of
              decoder input here are 4D boxes when `as_two_stage` is `True`,
              otherwise 2D points, although it has `points` in its name.
              The reference_points in encoder is always 2D points.
            - head_inputs_dict (dict): The keyword dictionary args of the
              bbox_head functions, which includes `enc_outputs_class` and
              `enc_outputs_coord`. They are both `None` when 'as_two_stage'
              is `False`. The dict is empty when `self.training` is `False`.
        """
        batch_size, _, c = memory.shape
        if self.as_two_stage:
            output_memory, output_proposals = \
                self.gen_encoder_output_proposals(
                    memory, memory_mask, spatial_shapes)
            enc_outputs_class = self.bbox_head.cls_branches[
                self.decoder.num_layers](
                    output_memory)
            enc_outputs_coord_unact = self.bbox_head.reg_branches[
                self.decoder.num_layers](output_memory) + output_proposals
            enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
            # We only use the first channel in enc_outputs_class as foreground,
            # the other (num_classes - 1) channels are actually not used.
            # Its targets are set to be 0s, which indicates the first
            # class (foreground) because we use [0, num_classes - 1] to
            # indicate class labels, background class is indicated by
            # num_classes (similar convention in RPN).
            # See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa
            # This follows the official implementation of Deformable DETR.
            topk_proposals = torch.topk(
                enc_outputs_class[..., 0], self.num_queries, dim=1)[1]
            topk_coords_unact = torch.gather(
                enc_outputs_coord_unact, 1,
                topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
            topk_coords_unact = topk_coords_unact.detach()
            reference_points = topk_coords_unact.sigmoid()
            pos_trans_out = self.pos_trans_fc(
                self.get_proposal_pos_embed(topk_coords_unact))
            pos_trans_out = self.pos_trans_norm(pos_trans_out)
            query_pos, query = torch.split(pos_trans_out, c, dim=2)
        else:
            enc_outputs_class, enc_outputs_coord = None, None
            query_embed = self.query_embedding.weight
            query_pos, query = torch.split(query_embed, c, dim=1)
            query_pos = query_pos.unsqueeze(0).expand(batch_size, -1, -1)
            query = query.unsqueeze(0).expand(batch_size, -1, -1)
            reference_points = self.reference_points_fc(query_pos).sigmoid()

        decoder_inputs_dict = dict(
            query=query,
            query_pos=query_pos,
            memory=memory,
            reference_points=reference_points)
        head_inputs_dict = dict(
            enc_outputs_class=enc_outputs_class,
            enc_outputs_coord=enc_outputs_coord) if self.training else dict()
        return decoder_inputs_dict, head_inputs_dict

    def forward_decoder(self, query: Tensor, query_pos: Tensor, memory: Tensor,
                        memory_mask: Tensor, reference_points: Tensor,
                        spatial_shapes: Tensor, level_start_index: Tensor,
                        valid_ratios: Tensor) -> Dict:
        """Forward with Transformer decoder.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.

        Args:
            query (Tensor): The queries of decoder inputs, has shape
                (bs, num_queries, dim).
            query_pos (Tensor): The positional queries of decoder inputs,
                has shape (bs, num_queries, dim).
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).
            memory_mask (Tensor): ByteTensor, the padding mask of the memory,
                has shape (bs, num_feat_points).
            reference_points (Tensor): The initial reference, has shape
                (bs, num_queries, 4) with the last dimension arranged as
                (cx, cy, w, h) when `as_two_stage` is `True`, otherwise has
                shape (bs, num_queries, 2) with the last dimension arranged as
                (cx, cy).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels, ) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).

        Returns:
            dict: The dictionary of decoder outputs, which includes the
            `hidden_states` of the decoder output and `references` including
            the initial and intermediate reference_points.
        """
        inter_states, inter_references = self.decoder(
            query=query,
            value=memory,
            query_pos=query_pos,
            key_padding_mask=memory_mask,  # for cross_attn
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            reg_branches=self.bbox_head.reg_branches
            if self.with_box_refine else None)
        references = [reference_points, *inter_references]
        decoder_outputs_dict = dict(
            hidden_states=inter_states, references=references)
        return decoder_outputs_dict

    @staticmethod
    def get_valid_ratio(mask: Tensor) -> Tensor:
        """Get the valid radios of feature map in a level.

        .. code:: text

                    |---> valid_W <---|
                 ---+-----------------+-----+---
                  A |                 |     | A
                  | |                 |     | |
                  | |                 |     | |
            valid_H |                 |     | |
                  | |                 |     | H
                  | |                 |     | |
                  V |                 |     | |
                 ---+-----------------+     | |
                    |                       | V
                    +-----------------------+---
                    |---------> W <---------|

          The valid_ratios are defined as:
                r_h = valid_H / H,  r_w = valid_W / W
          They are the factors to re-normalize the relative coordinates of the
          image to the relative coordinates of the current level feature map.

        Args:
            mask (Tensor): Binary mask of a feature map, has shape (bs, H, W).

        Returns:
            Tensor: valid ratios [r_w, r_h] of a feature map, has shape (1, 2).
        """
        _, H, W = mask.shape
        valid_H = torch.sum(~mask[:, :, 0], 1)
        valid_W = torch.sum(~mask[:, 0, :], 1)
        valid_ratio_h = valid_H.float() / H
        valid_ratio_w = valid_W.float() / W
        valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
        return valid_ratio

    def gen_encoder_output_proposals(
            self, memory: Tensor, memory_mask: Tensor,
            spatial_shapes: Tensor) -> Tuple[Tensor, Tensor]:
        """Generate proposals from encoded memory. The function will only be
        used when `as_two_stage` is `True`.

        Args:
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).
            memory_mask (Tensor): ByteTensor, the padding mask of the memory,
                has shape (bs, num_feat_points).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).

        Returns:
            tuple: A tuple of transformed memory and proposals.

            - output_memory (Tensor): The transformed memory for obtaining
              top-k proposals, has shape (bs, num_feat_points, dim).
            - output_proposals (Tensor): The inverse-normalized proposal, has
              shape (batch_size, num_keys, 4) with the last dimension arranged
              as (cx, cy, w, h).
        """

        bs = memory.size(0)
        proposals = []
        _cur = 0  # start index in the sequence of the current level
        for lvl, (H, W) in enumerate(spatial_shapes):
            mask_flatten_ = memory_mask[:,
                                        _cur:(_cur + H * W)].view(bs, H, W, 1)
            valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1).unsqueeze(-1)
            valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1).unsqueeze(-1)

            grid_y, grid_x = torch.meshgrid(
                torch.linspace(
                    0, H - 1, H, dtype=torch.float32, device=memory.device),
                torch.linspace(
                    0, W - 1, W, dtype=torch.float32, device=memory.device))
            grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)

            scale = torch.cat([valid_W, valid_H], 1).view(bs, 1, 1, 2)
            grid = (grid.unsqueeze(0).expand(bs, -1, -1, -1) + 0.5) / scale
            wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
            proposal = torch.cat((grid, wh), -1).view(bs, -1, 4)
            proposals.append(proposal)
            _cur += (H * W)
        output_proposals = torch.cat(proposals, 1)
        output_proposals_valid = ((output_proposals > 0.01) &
                                  (output_proposals < 0.99)).all(
                                      -1, keepdim=True)
        # inverse_sigmoid
        output_proposals = torch.log(output_proposals / (1 - output_proposals))
        output_proposals = output_proposals.masked_fill(
            memory_mask.unsqueeze(-1), float('inf'))
        output_proposals = output_proposals.masked_fill(
            ~output_proposals_valid, float('inf'))

        output_memory = memory
        output_memory = output_memory.masked_fill(
            memory_mask.unsqueeze(-1), float(0))
        output_memory = output_memory.masked_fill(~output_proposals_valid,
                                                  float(0))
        output_memory = self.memory_trans_fc(output_memory)
        output_memory = self.memory_trans_norm(output_memory)
        # [bs, sum(hw), 2]
        return output_memory, output_proposals

    @staticmethod
    def get_proposal_pos_embed(proposals: Tensor,
                               num_pos_feats: int = 128,
                               temperature: int = 10000) -> Tensor:
        """Get the position embedding of the proposal.

        Args:
            proposals (Tensor): Not normalized proposals, has shape
                (bs, num_queries, 4) with the last dimension arranged as
                (cx, cy, w, h).
            num_pos_feats (int, optional): The feature dimension for each
                position along x, y, w, and h-axis. Note the final returned
                dimension for each position is 4 times of num_pos_feats.
                Default to 128.
            temperature (int, optional): The temperature used for scaling the
                position embedding. Defaults to 10000.

        Returns:
            Tensor: The position embedding of proposal, has shape
            (bs, num_queries, num_pos_feats * 4), with the last dimension
            arranged as (cx, cy, w, h)
        """
        scale = 2 * math.pi
        dim_t = torch.arange(
            num_pos_feats, dtype=torch.float32, device=proposals.device)
        dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
        # N, L, 4
        proposals = proposals.sigmoid() * scale
        # N, L, 4, 128
        pos = proposals[:, :, :, None] / dim_t
        # N, L, 4, 64, 2
        pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()),
                          dim=4).flatten(2)
        return pos