Spaces:
Runtime error
Runtime error
File size: 10,582 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmengine.model import BaseModule
from mmdet.registry import MODELS
from ..layers import ResLayer
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNetV1d
class RSoftmax(nn.Module):
"""Radix Softmax module in ``SplitAttentionConv2d``.
Args:
radix (int): Radix of input.
groups (int): Groups of input.
"""
def __init__(self, radix, groups):
super().__init__()
self.radix = radix
self.groups = groups
def forward(self, x):
batch = x.size(0)
if self.radix > 1:
x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2)
x = F.softmax(x, dim=1)
x = x.reshape(batch, -1)
else:
x = torch.sigmoid(x)
return x
class SplitAttentionConv2d(BaseModule):
"""Split-Attention Conv2d in ResNeSt.
Args:
in_channels (int): Number of channels in the input feature map.
channels (int): Number of intermediate channels.
kernel_size (int | tuple[int]): Size of the convolution kernel.
stride (int | tuple[int]): Stride of the convolution.
padding (int | tuple[int]): Zero-padding added to both sides of
dilation (int | tuple[int]): Spacing between kernel elements.
groups (int): Number of blocked connections from input channels to
output channels.
groups (int): Same as nn.Conv2d.
radix (int): Radix of SpltAtConv2d. Default: 2
reduction_factor (int): Reduction factor of inter_channels. Default: 4.
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer. Default: None.
dcn (dict): Config dict for DCN. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
radix=2,
reduction_factor=4,
conv_cfg=None,
norm_cfg=dict(type='BN'),
dcn=None,
init_cfg=None):
super(SplitAttentionConv2d, self).__init__(init_cfg)
inter_channels = max(in_channels * radix // reduction_factor, 32)
self.radix = radix
self.groups = groups
self.channels = channels
self.with_dcn = dcn is not None
self.dcn = dcn
fallback_on_stride = False
if self.with_dcn:
fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
if self.with_dcn and not fallback_on_stride:
assert conv_cfg is None, 'conv_cfg must be None for DCN'
conv_cfg = dcn
self.conv = build_conv_layer(
conv_cfg,
in_channels,
channels * radix,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups * radix,
bias=False)
# To be consistent with original implementation, starting from 0
self.norm0_name, norm0 = build_norm_layer(
norm_cfg, channels * radix, postfix=0)
self.add_module(self.norm0_name, norm0)
self.relu = nn.ReLU(inplace=True)
self.fc1 = build_conv_layer(
None, channels, inter_channels, 1, groups=self.groups)
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, inter_channels, postfix=1)
self.add_module(self.norm1_name, norm1)
self.fc2 = build_conv_layer(
None, inter_channels, channels * radix, 1, groups=self.groups)
self.rsoftmax = RSoftmax(radix, groups)
@property
def norm0(self):
"""nn.Module: the normalization layer named "norm0" """
return getattr(self, self.norm0_name)
@property
def norm1(self):
"""nn.Module: the normalization layer named "norm1" """
return getattr(self, self.norm1_name)
def forward(self, x):
x = self.conv(x)
x = self.norm0(x)
x = self.relu(x)
batch, rchannel = x.shape[:2]
batch = x.size(0)
if self.radix > 1:
splits = x.view(batch, self.radix, -1, *x.shape[2:])
gap = splits.sum(dim=1)
else:
gap = x
gap = F.adaptive_avg_pool2d(gap, 1)
gap = self.fc1(gap)
gap = self.norm1(gap)
gap = self.relu(gap)
atten = self.fc2(gap)
atten = self.rsoftmax(atten).view(batch, -1, 1, 1)
if self.radix > 1:
attens = atten.view(batch, self.radix, -1, *atten.shape[2:])
out = torch.sum(attens * splits, dim=1)
else:
out = atten * x
return out.contiguous()
class Bottleneck(_Bottleneck):
"""Bottleneck block for ResNeSt.
Args:
inplane (int): Input planes of this block.
planes (int): Middle planes of this block.
groups (int): Groups of conv2.
base_width (int): Base of width in terms of base channels. Default: 4.
base_channels (int): Base of channels for calculating width.
Default: 64.
radix (int): Radix of SpltAtConv2d. Default: 2
reduction_factor (int): Reduction factor of inter_channels in
SplitAttentionConv2d. Default: 4.
avg_down_stride (bool): Whether to use average pool for stride in
Bottleneck. Default: True.
kwargs (dict): Key word arguments for base class.
"""
expansion = 4
def __init__(self,
inplanes,
planes,
groups=1,
base_width=4,
base_channels=64,
radix=2,
reduction_factor=4,
avg_down_stride=True,
**kwargs):
"""Bottleneck block for ResNeSt."""
super(Bottleneck, self).__init__(inplanes, planes, **kwargs)
if groups == 1:
width = self.planes
else:
width = math.floor(self.planes *
(base_width / base_channels)) * groups
self.avg_down_stride = avg_down_stride and self.conv2_stride > 1
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, width, postfix=1)
self.norm3_name, norm3 = build_norm_layer(
self.norm_cfg, self.planes * self.expansion, postfix=3)
self.conv1 = build_conv_layer(
self.conv_cfg,
self.inplanes,
width,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
self.with_modulated_dcn = False
self.conv2 = SplitAttentionConv2d(
width,
width,
kernel_size=3,
stride=1 if self.avg_down_stride else self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
groups=groups,
radix=radix,
reduction_factor=reduction_factor,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
dcn=self.dcn)
delattr(self, self.norm2_name)
if self.avg_down_stride:
self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1)
self.conv3 = build_conv_layer(
self.conv_cfg,
width,
self.planes * self.expansion,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
def forward(self, x):
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
if self.with_plugins:
out = self.forward_plugin(out, self.after_conv1_plugin_names)
out = self.conv2(out)
if self.avg_down_stride:
out = self.avd_layer(out)
if self.with_plugins:
out = self.forward_plugin(out, self.after_conv2_plugin_names)
out = self.conv3(out)
out = self.norm3(out)
if self.with_plugins:
out = self.forward_plugin(out, self.after_conv3_plugin_names)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out
@MODELS.register_module()
class ResNeSt(ResNetV1d):
"""ResNeSt backbone.
Args:
groups (int): Number of groups of Bottleneck. Default: 1
base_width (int): Base width of Bottleneck. Default: 4
radix (int): Radix of SplitAttentionConv2d. Default: 2
reduction_factor (int): Reduction factor of inter_channels in
SplitAttentionConv2d. Default: 4.
avg_down_stride (bool): Whether to use average pool for stride in
Bottleneck. Default: True.
kwargs (dict): Keyword arguments for ResNet.
"""
arch_settings = {
50: (Bottleneck, (3, 4, 6, 3)),
101: (Bottleneck, (3, 4, 23, 3)),
152: (Bottleneck, (3, 8, 36, 3)),
200: (Bottleneck, (3, 24, 36, 3))
}
def __init__(self,
groups=1,
base_width=4,
radix=2,
reduction_factor=4,
avg_down_stride=True,
**kwargs):
self.groups = groups
self.base_width = base_width
self.radix = radix
self.reduction_factor = reduction_factor
self.avg_down_stride = avg_down_stride
super(ResNeSt, self).__init__(**kwargs)
def make_res_layer(self, **kwargs):
"""Pack all blocks in a stage into a ``ResLayer``."""
return ResLayer(
groups=self.groups,
base_width=self.base_width,
base_channels=self.base_channels,
radix=self.radix,
reduction_factor=self.reduction_factor,
avg_down_stride=self.avg_down_stride,
**kwargs)
|