File size: 16,240 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import math
from functools import partial

import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn.bricks import ConvModule, DropPath
from mmengine.model import BaseModule, Sequential

from mmdet.registry import MODELS
from ..layers import InvertedResidual, SELayer
from ..utils import make_divisible


class EdgeResidual(BaseModule):
    """Edge Residual Block.

    Args:
        in_channels (int): The input channels of this module.
        out_channels (int): The output channels of this module.
        mid_channels (int): The input channels of the second convolution.
        kernel_size (int): The kernel size of the first convolution.
            Defaults to 3.
        stride (int): The stride of the first convolution. Defaults to 1.
        se_cfg (dict, optional): Config dict for se layer. Defaults to None,
            which means no se layer.
        with_residual (bool): Use residual connection. Defaults to True.
        conv_cfg (dict, optional): Config dict for convolution layer.
            Defaults to None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='BN')``.
        act_cfg (dict): Config dict for activation layer.
            Defaults to ``dict(type='ReLU')``.
        drop_path_rate (float): stochastic depth rate. Defaults to 0.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        init_cfg (dict | list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 mid_channels,
                 kernel_size=3,
                 stride=1,
                 se_cfg=None,
                 with_residual=True,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU'),
                 drop_path_rate=0.,
                 with_cp=False,
                 init_cfg=None,
                 **kwargs):
        super(EdgeResidual, self).__init__(init_cfg=init_cfg)
        assert stride in [1, 2]
        self.with_cp = with_cp
        self.drop_path = DropPath(
            drop_path_rate) if drop_path_rate > 0 else nn.Identity()
        self.with_se = se_cfg is not None
        self.with_residual = (
            stride == 1 and in_channels == out_channels and with_residual)

        if self.with_se:
            assert isinstance(se_cfg, dict)

        self.conv1 = ConvModule(
            in_channels=in_channels,
            out_channels=mid_channels,
            kernel_size=kernel_size,
            stride=1,
            padding=kernel_size // 2,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)

        if self.with_se:
            self.se = SELayer(**se_cfg)

        self.conv2 = ConvModule(
            in_channels=mid_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=stride,
            padding=0,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=None)

    def forward(self, x):

        def _inner_forward(x):
            out = x
            out = self.conv1(out)

            if self.with_se:
                out = self.se(out)

            out = self.conv2(out)

            if self.with_residual:
                return x + self.drop_path(out)
            else:
                return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        return out


def model_scaling(layer_setting, arch_setting):
    """Scaling operation to the layer's parameters according to the
    arch_setting."""
    # scale width
    new_layer_setting = copy.deepcopy(layer_setting)
    for layer_cfg in new_layer_setting:
        for block_cfg in layer_cfg:
            block_cfg[1] = make_divisible(block_cfg[1] * arch_setting[0], 8)

    # scale depth
    split_layer_setting = [new_layer_setting[0]]
    for layer_cfg in new_layer_setting[1:-1]:
        tmp_index = [0]
        for i in range(len(layer_cfg) - 1):
            if layer_cfg[i + 1][1] != layer_cfg[i][1]:
                tmp_index.append(i + 1)
        tmp_index.append(len(layer_cfg))
        for i in range(len(tmp_index) - 1):
            split_layer_setting.append(layer_cfg[tmp_index[i]:tmp_index[i +
                                                                        1]])
    split_layer_setting.append(new_layer_setting[-1])

    num_of_layers = [len(layer_cfg) for layer_cfg in split_layer_setting[1:-1]]
    new_layers = [
        int(math.ceil(arch_setting[1] * num)) for num in num_of_layers
    ]

    merge_layer_setting = [split_layer_setting[0]]
    for i, layer_cfg in enumerate(split_layer_setting[1:-1]):
        if new_layers[i] <= num_of_layers[i]:
            tmp_layer_cfg = layer_cfg[:new_layers[i]]
        else:
            tmp_layer_cfg = copy.deepcopy(layer_cfg) + [layer_cfg[-1]] * (
                new_layers[i] - num_of_layers[i])
        if tmp_layer_cfg[0][3] == 1 and i != 0:
            merge_layer_setting[-1] += tmp_layer_cfg.copy()
        else:
            merge_layer_setting.append(tmp_layer_cfg.copy())
    merge_layer_setting.append(split_layer_setting[-1])

    return merge_layer_setting


@MODELS.register_module()
class EfficientNet(BaseModule):
    """EfficientNet backbone.

    Args:
        arch (str): Architecture of efficientnet. Defaults to b0.
        out_indices (Sequence[int]): Output from which stages.
            Defaults to (6, ).
        frozen_stages (int): Stages to be frozen (all param fixed).
            Defaults to 0, which means not freezing any parameters.
        conv_cfg (dict): Config dict for convolution layer.
            Defaults to None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='BN').
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='Swish').
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
    """

    # Parameters to build layers.
    # 'b' represents the architecture of normal EfficientNet family includes
    # 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8'.
    # 'e' represents the architecture of EfficientNet-EdgeTPU including 'es',
    # 'em', 'el'.
    # 6 parameters are needed to construct a layer, From left to right:
    # - kernel_size: The kernel size of the block
    # - out_channel: The number of out_channels of the block
    # - se_ratio: The sequeeze ratio of SELayer.
    # - stride: The stride of the block
    # - expand_ratio: The expand_ratio of the mid_channels
    # - block_type: -1: Not a block, 0: InvertedResidual, 1: EdgeResidual
    layer_settings = {
        'b': [[[3, 32, 0, 2, 0, -1]],
              [[3, 16, 4, 1, 1, 0]],
              [[3, 24, 4, 2, 6, 0],
               [3, 24, 4, 1, 6, 0]],
              [[5, 40, 4, 2, 6, 0],
               [5, 40, 4, 1, 6, 0]],
              [[3, 80, 4, 2, 6, 0],
               [3, 80, 4, 1, 6, 0],
               [3, 80, 4, 1, 6, 0],
               [5, 112, 4, 1, 6, 0],
               [5, 112, 4, 1, 6, 0],
               [5, 112, 4, 1, 6, 0]],
              [[5, 192, 4, 2, 6, 0],
               [5, 192, 4, 1, 6, 0],
               [5, 192, 4, 1, 6, 0],
               [5, 192, 4, 1, 6, 0],
               [3, 320, 4, 1, 6, 0]],
              [[1, 1280, 0, 1, 0, -1]]
              ],
        'e': [[[3, 32, 0, 2, 0, -1]],
              [[3, 24, 0, 1, 3, 1]],
              [[3, 32, 0, 2, 8, 1],
               [3, 32, 0, 1, 8, 1]],
              [[3, 48, 0, 2, 8, 1],
               [3, 48, 0, 1, 8, 1],
               [3, 48, 0, 1, 8, 1],
               [3, 48, 0, 1, 8, 1]],
              [[5, 96, 0, 2, 8, 0],
               [5, 96, 0, 1, 8, 0],
               [5, 96, 0, 1, 8, 0],
               [5, 96, 0, 1, 8, 0],
               [5, 96, 0, 1, 8, 0],
               [5, 144, 0, 1, 8, 0],
               [5, 144, 0, 1, 8, 0],
               [5, 144, 0, 1, 8, 0],
               [5, 144, 0, 1, 8, 0]],
              [[5, 192, 0, 2, 8, 0],
               [5, 192, 0, 1, 8, 0]],
              [[1, 1280, 0, 1, 0, -1]]
              ]
    }  # yapf: disable

    # Parameters to build different kinds of architecture.
    # From left to right: scaling factor for width, scaling factor for depth,
    # resolution.
    arch_settings = {
        'b0': (1.0, 1.0, 224),
        'b1': (1.0, 1.1, 240),
        'b2': (1.1, 1.2, 260),
        'b3': (1.2, 1.4, 300),
        'b4': (1.4, 1.8, 380),
        'b5': (1.6, 2.2, 456),
        'b6': (1.8, 2.6, 528),
        'b7': (2.0, 3.1, 600),
        'b8': (2.2, 3.6, 672),
        'es': (1.0, 1.0, 224),
        'em': (1.0, 1.1, 240),
        'el': (1.2, 1.4, 300)
    }

    def __init__(self,
                 arch='b0',
                 drop_path_rate=0.,
                 out_indices=(6, ),
                 frozen_stages=0,
                 conv_cfg=dict(type='Conv2dAdaptivePadding'),
                 norm_cfg=dict(type='BN', eps=1e-3),
                 act_cfg=dict(type='Swish'),
                 norm_eval=False,
                 with_cp=False,
                 init_cfg=[
                     dict(type='Kaiming', layer='Conv2d'),
                     dict(
                         type='Constant',
                         layer=['_BatchNorm', 'GroupNorm'],
                         val=1)
                 ]):
        super(EfficientNet, self).__init__(init_cfg)
        assert arch in self.arch_settings, \
            f'"{arch}" is not one of the arch_settings ' \
            f'({", ".join(self.arch_settings.keys())})'
        self.arch_setting = self.arch_settings[arch]
        self.layer_setting = self.layer_settings[arch[:1]]
        for index in out_indices:
            if index not in range(0, len(self.layer_setting)):
                raise ValueError('the item in out_indices must in '
                                 f'range(0, {len(self.layer_setting)}). '
                                 f'But received {index}')

        if frozen_stages not in range(len(self.layer_setting) + 1):
            raise ValueError('frozen_stages must be in range(0, '
                             f'{len(self.layer_setting) + 1}). '
                             f'But received {frozen_stages}')
        self.drop_path_rate = drop_path_rate
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp

        self.layer_setting = model_scaling(self.layer_setting,
                                           self.arch_setting)
        block_cfg_0 = self.layer_setting[0][0]
        block_cfg_last = self.layer_setting[-1][0]
        self.in_channels = make_divisible(block_cfg_0[1], 8)
        self.out_channels = block_cfg_last[1]
        self.layers = nn.ModuleList()
        self.layers.append(
            ConvModule(
                in_channels=3,
                out_channels=self.in_channels,
                kernel_size=block_cfg_0[0],
                stride=block_cfg_0[3],
                padding=block_cfg_0[0] // 2,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg))
        self.make_layer()
        # Avoid building unused layers in mmdetection.
        if len(self.layers) < max(self.out_indices) + 1:
            self.layers.append(
                ConvModule(
                    in_channels=self.in_channels,
                    out_channels=self.out_channels,
                    kernel_size=block_cfg_last[0],
                    stride=block_cfg_last[3],
                    padding=block_cfg_last[0] // 2,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg))

    def make_layer(self):
        # Without the first and the final conv block.
        layer_setting = self.layer_setting[1:-1]

        total_num_blocks = sum([len(x) for x in layer_setting])
        block_idx = 0
        dpr = [
            x.item()
            for x in torch.linspace(0, self.drop_path_rate, total_num_blocks)
        ]  # stochastic depth decay rule

        for i, layer_cfg in enumerate(layer_setting):
            # Avoid building unused layers in mmdetection.
            if i > max(self.out_indices) - 1:
                break
            layer = []
            for i, block_cfg in enumerate(layer_cfg):
                (kernel_size, out_channels, se_ratio, stride, expand_ratio,
                 block_type) = block_cfg

                mid_channels = int(self.in_channels * expand_ratio)
                out_channels = make_divisible(out_channels, 8)
                if se_ratio <= 0:
                    se_cfg = None
                else:
                    # In mmdetection, the `divisor` is deleted to align
                    # the logic of SELayer with mmcls.
                    se_cfg = dict(
                        channels=mid_channels,
                        ratio=expand_ratio * se_ratio,
                        act_cfg=(self.act_cfg, dict(type='Sigmoid')))
                if block_type == 1:  # edge tpu
                    if i > 0 and expand_ratio == 3:
                        with_residual = False
                        expand_ratio = 4
                    else:
                        with_residual = True
                    mid_channels = int(self.in_channels * expand_ratio)
                    if se_cfg is not None:
                        # In mmdetection, the `divisor` is deleted to align
                        # the logic of SELayer with mmcls.
                        se_cfg = dict(
                            channels=mid_channels,
                            ratio=se_ratio * expand_ratio,
                            act_cfg=(self.act_cfg, dict(type='Sigmoid')))
                    block = partial(EdgeResidual, with_residual=with_residual)
                else:
                    block = InvertedResidual
                layer.append(
                    block(
                        in_channels=self.in_channels,
                        out_channels=out_channels,
                        mid_channels=mid_channels,
                        kernel_size=kernel_size,
                        stride=stride,
                        se_cfg=se_cfg,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg,
                        drop_path_rate=dpr[block_idx],
                        with_cp=self.with_cp,
                        # In mmdetection, `with_expand_conv` is set to align
                        # the logic of InvertedResidual with mmcls.
                        with_expand_conv=(mid_channels != self.in_channels)))
                self.in_channels = out_channels
                block_idx += 1
            self.layers.append(Sequential(*layer))

    def forward(self, x):
        outs = []
        for i, layer in enumerate(self.layers):
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)

        return tuple(outs)

    def _freeze_stages(self):
        for i in range(self.frozen_stages):
            m = self.layers[i]
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    def train(self, mode=True):
        super(EfficientNet, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()