File size: 12,764 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmengine.logging import MMLogger
from mmengine.model import Sequential, constant_init, kaiming_init
from mmengine.runner.checkpoint import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm

from mmdet.registry import MODELS
from .resnet import BasicBlock
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNet


class Bottleneck(_Bottleneck):
    r"""Bottleneck for the ResNet backbone in `DetectoRS
    <https://arxiv.org/pdf/2006.02334.pdf>`_.

    This bottleneck allows the users to specify whether to use
    SAC (Switchable Atrous Convolution) and RFP (Recursive Feature Pyramid).

    Args:
         inplanes (int): The number of input channels.
         planes (int): The number of output channels before expansion.
         rfp_inplanes (int, optional): The number of channels from RFP.
             Default: None. If specified, an additional conv layer will be
             added for ``rfp_feat``. Otherwise, the structure is the same as
             base class.
         sac (dict, optional): Dictionary to construct SAC. Default: None.
         init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 rfp_inplanes=None,
                 sac=None,
                 init_cfg=None,
                 **kwargs):
        super(Bottleneck, self).__init__(
            inplanes, planes, init_cfg=init_cfg, **kwargs)

        assert sac is None or isinstance(sac, dict)
        self.sac = sac
        self.with_sac = sac is not None
        if self.with_sac:
            self.conv2 = build_conv_layer(
                self.sac,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation,
                bias=False)

        self.rfp_inplanes = rfp_inplanes
        if self.rfp_inplanes:
            self.rfp_conv = build_conv_layer(
                None,
                self.rfp_inplanes,
                planes * self.expansion,
                1,
                stride=1,
                bias=True)
            if init_cfg is None:
                self.init_cfg = dict(
                    type='Constant', val=0, override=dict(name='rfp_conv'))

    def rfp_forward(self, x, rfp_feat):
        """The forward function that also takes the RFP features as input."""

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv1_plugin_names)

            out = self.conv2(out)
            out = self.norm2(out)
            out = self.relu(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv2_plugin_names)

            out = self.conv3(out)
            out = self.norm3(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv3_plugin_names)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        if self.rfp_inplanes:
            rfp_feat = self.rfp_conv(rfp_feat)
            out = out + rfp_feat

        out = self.relu(out)

        return out


class ResLayer(Sequential):
    """ResLayer to build ResNet style backbone for RPF in detectoRS.

    The difference between this module and base class is that we pass
    ``rfp_inplanes`` to the first block.

    Args:
        block (nn.Module): block used to build ResLayer.
        inplanes (int): inplanes of block.
        planes (int): planes of block.
        num_blocks (int): number of blocks.
        stride (int): stride of the first block. Default: 1
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck. Default: False
        conv_cfg (dict): dictionary to construct and config conv layer.
            Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
        downsample_first (bool): Downsample at the first block or last block.
            False for Hourglass, True for ResNet. Default: True
        rfp_inplanes (int, optional): The number of channels from RFP.
            Default: None. If specified, an additional conv layer will be
            added for ``rfp_feat``. Otherwise, the structure is the same as
            base class.
    """

    def __init__(self,
                 block,
                 inplanes,
                 planes,
                 num_blocks,
                 stride=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 downsample_first=True,
                 rfp_inplanes=None,
                 **kwargs):
        self.block = block
        assert downsample_first, f'downsample_first={downsample_first} is ' \
                                 'not supported in DetectoRS'

        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = []
            conv_stride = stride
            if avg_down and stride != 1:
                conv_stride = 1
                downsample.append(
                    nn.AvgPool2d(
                        kernel_size=stride,
                        stride=stride,
                        ceil_mode=True,
                        count_include_pad=False))
            downsample.extend([
                build_conv_layer(
                    conv_cfg,
                    inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=conv_stride,
                    bias=False),
                build_norm_layer(norm_cfg, planes * block.expansion)[1]
            ])
            downsample = nn.Sequential(*downsample)

        layers = []
        layers.append(
            block(
                inplanes=inplanes,
                planes=planes,
                stride=stride,
                downsample=downsample,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                rfp_inplanes=rfp_inplanes,
                **kwargs))
        inplanes = planes * block.expansion
        for _ in range(1, num_blocks):
            layers.append(
                block(
                    inplanes=inplanes,
                    planes=planes,
                    stride=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))

        super(ResLayer, self).__init__(*layers)


@MODELS.register_module()
class DetectoRS_ResNet(ResNet):
    """ResNet backbone for DetectoRS.

    Args:
        sac (dict, optional): Dictionary to construct SAC (Switchable Atrous
            Convolution). Default: None.
        stage_with_sac (list): Which stage to use sac. Default: (False, False,
            False, False).
        rfp_inplanes (int, optional): The number of channels from RFP.
            Default: None. If specified, an additional conv layer will be
            added for ``rfp_feat``. Otherwise, the structure is the same as
            base class.
        output_img (bool): If ``True``, the input image will be inserted into
            the starting position of output. Default: False.
    """

    arch_settings = {
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

    def __init__(self,
                 sac=None,
                 stage_with_sac=(False, False, False, False),
                 rfp_inplanes=None,
                 output_img=False,
                 pretrained=None,
                 init_cfg=None,
                 **kwargs):
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be specified at the same time'
        self.pretrained = pretrained
        if init_cfg is not None:
            assert isinstance(init_cfg, dict), \
                f'init_cfg must be a dict, but got {type(init_cfg)}'
            if 'type' in init_cfg:
                assert init_cfg.get('type') == 'Pretrained', \
                    'Only can initialize module by loading a pretrained model'
            else:
                raise KeyError('`init_cfg` must contain the key "type"')
            self.pretrained = init_cfg.get('checkpoint')
        self.sac = sac
        self.stage_with_sac = stage_with_sac
        self.rfp_inplanes = rfp_inplanes
        self.output_img = output_img
        super(DetectoRS_ResNet, self).__init__(**kwargs)

        self.inplanes = self.stem_channels
        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
            stride = self.strides[i]
            dilation = self.dilations[i]
            dcn = self.dcn if self.stage_with_dcn[i] else None
            sac = self.sac if self.stage_with_sac[i] else None
            if self.plugins is not None:
                stage_plugins = self.make_stage_plugins(self.plugins, i)
            else:
                stage_plugins = None
            planes = self.base_channels * 2**i
            res_layer = self.make_res_layer(
                block=self.block,
                inplanes=self.inplanes,
                planes=planes,
                num_blocks=num_blocks,
                stride=stride,
                dilation=dilation,
                style=self.style,
                avg_down=self.avg_down,
                with_cp=self.with_cp,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                dcn=dcn,
                sac=sac,
                rfp_inplanes=rfp_inplanes if i > 0 else None,
                plugins=stage_plugins)
            self.inplanes = planes * self.block.expansion
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self._freeze_stages()

    # In order to be properly initialized by RFP
    def init_weights(self):
        # Calling this method will cause parameter initialization exception
        # super(DetectoRS_ResNet, self).init_weights()

        if isinstance(self.pretrained, str):
            logger = MMLogger.get_current_instance()
            load_checkpoint(self, self.pretrained, strict=False, logger=logger)
        elif self.pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
                    constant_init(m, 1)

            if self.dcn is not None:
                for m in self.modules():
                    if isinstance(m, Bottleneck) and hasattr(
                            m.conv2, 'conv_offset'):
                        constant_init(m.conv2.conv_offset, 0)

            if self.zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck):
                        constant_init(m.norm3, 0)
                    elif isinstance(m, BasicBlock):
                        constant_init(m.norm2, 0)
        else:
            raise TypeError('pretrained must be a str or None')

    def make_res_layer(self, **kwargs):
        """Pack all blocks in a stage into a ``ResLayer`` for DetectoRS."""
        return ResLayer(**kwargs)

    def forward(self, x):
        """Forward function."""
        outs = list(super(DetectoRS_ResNet, self).forward(x))
        if self.output_img:
            outs.insert(0, x)
        return tuple(outs)

    def rfp_forward(self, x, rfp_feats):
        """Forward function for RFP."""
        if self.deep_stem:
            x = self.stem(x)
        else:
            x = self.conv1(x)
            x = self.norm1(x)
            x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            rfp_feat = rfp_feats[i] if i > 0 else None
            for layer in res_layer:
                x = layer.rfp_forward(x, rfp_feat)
            if i in self.out_indices:
                outs.append(x)
        return tuple(outs)