File size: 24,008 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
import warnings
from typing import Dict, Iterable, List, Optional, Sequence, Union

import mmcv
import mmengine
import numpy as np
import torch.nn as nn
from mmengine.dataset import Compose
from mmengine.fileio import (get_file_backend, isdir, join_path,
                             list_dir_or_file)
from mmengine.infer.infer import BaseInferencer, ModelType
from mmengine.model.utils import revert_sync_batchnorm
from mmengine.registry import init_default_scope
from mmengine.runner.checkpoint import _load_checkpoint_to_model
from mmengine.visualization import Visualizer
from rich.progress import track

from mmdet.evaluation import INSTANCE_OFFSET
from mmdet.registry import DATASETS
from mmdet.structures import DetDataSample
from mmdet.structures.mask import encode_mask_results, mask2bbox
from mmdet.utils import ConfigType
from ..evaluation import get_classes

try:
    from panopticapi.evaluation import VOID
    from panopticapi.utils import id2rgb
except ImportError:
    id2rgb = None
    VOID = None

InputType = Union[str, np.ndarray]
InputsType = Union[InputType, Sequence[InputType]]
PredType = List[DetDataSample]
ImgType = Union[np.ndarray, Sequence[np.ndarray]]

IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif',
                  '.tiff', '.webp')


class DetInferencer(BaseInferencer):
    """Object Detection Inferencer.

    Args:
        model (str, optional): Path to the config file or the model name
            defined in metafile. For example, it could be
            "rtmdet-s" or 'rtmdet_s_8xb32-300e_coco' or
            "configs/rtmdet/rtmdet_s_8xb32-300e_coco.py".
            If model is not specified, user must provide the
            `weights` saved by MMEngine which contains the config string.
            Defaults to None.
        weights (str, optional): Path to the checkpoint. If it is not specified
            and model is a model name of metafile, the weights will be loaded
            from metafile. Defaults to None.
        device (str, optional): Device to run inference. If None, the available
            device will be automatically used. Defaults to None.
        scope (str, optional): The scope of the model. Defaults to mmdet.
        palette (str): Color palette used for visualization. The order of
            priority is palette -> config -> checkpoint. Defaults to 'none'.
    """

    preprocess_kwargs: set = set()
    forward_kwargs: set = set()
    visualize_kwargs: set = {
        'return_vis',
        'show',
        'wait_time',
        'draw_pred',
        'pred_score_thr',
        'img_out_dir',
        'no_save_vis',
    }
    postprocess_kwargs: set = {
        'print_result',
        'pred_out_dir',
        'return_datasample',
        'no_save_pred',
    }

    def __init__(self,
                 model: Optional[Union[ModelType, str]] = None,
                 weights: Optional[str] = None,
                 device: Optional[str] = None,
                 scope: Optional[str] = 'mmdet',
                 palette: str = 'none') -> None:
        # A global counter tracking the number of images processed, for
        # naming of the output images
        self.num_visualized_imgs = 0
        self.num_predicted_imgs = 0
        self.palette = palette
        init_default_scope(scope)
        super().__init__(
            model=model, weights=weights, device=device, scope=scope)
        self.model = revert_sync_batchnorm(self.model)

    def _load_weights_to_model(self, model: nn.Module,
                               checkpoint: Optional[dict],
                               cfg: Optional[ConfigType]) -> None:
        """Loading model weights and meta information from cfg and checkpoint.

        Args:
            model (nn.Module): Model to load weights and meta information.
            checkpoint (dict, optional): The loaded checkpoint.
            cfg (Config or ConfigDict, optional): The loaded config.
        """

        if checkpoint is not None:
            _load_checkpoint_to_model(model, checkpoint)
            checkpoint_meta = checkpoint.get('meta', {})
            # save the dataset_meta in the model for convenience
            if 'dataset_meta' in checkpoint_meta:
                # mmdet 3.x, all keys should be lowercase
                model.dataset_meta = {
                    k.lower(): v
                    for k, v in checkpoint_meta['dataset_meta'].items()
                }
            elif 'CLASSES' in checkpoint_meta:
                # < mmdet 3.x
                classes = checkpoint_meta['CLASSES']
                model.dataset_meta = {'classes': classes}
            else:
                warnings.warn(
                    'dataset_meta or class names are not saved in the '
                    'checkpoint\'s meta data, use COCO classes by default.')
                model.dataset_meta = {'classes': get_classes('coco')}
        else:
            warnings.warn('Checkpoint is not loaded, and the inference '
                          'result is calculated by the randomly initialized '
                          'model!')
            warnings.warn('weights is None, use COCO classes by default.')
            model.dataset_meta = {'classes': get_classes('coco')}

        # Priority:  args.palette -> config -> checkpoint
        if self.palette != 'none':
            model.dataset_meta['palette'] = self.palette
        else:
            test_dataset_cfg = copy.deepcopy(cfg.test_dataloader.dataset)
            # lazy init. We only need the metainfo.
            test_dataset_cfg['lazy_init'] = True
            metainfo = DATASETS.build(test_dataset_cfg).metainfo
            cfg_palette = metainfo.get('palette', None)
            if cfg_palette is not None:
                model.dataset_meta['palette'] = cfg_palette
            else:
                if 'palette' not in model.dataset_meta:
                    warnings.warn(
                        'palette does not exist, random is used by default. '
                        'You can also set the palette to customize.')
                    model.dataset_meta['palette'] = 'random'

    def _init_pipeline(self, cfg: ConfigType) -> Compose:
        """Initialize the test pipeline."""
        pipeline_cfg = cfg.test_dataloader.dataset.pipeline

        # For inference, the key of ``img_id`` is not used.
        if 'meta_keys' in pipeline_cfg[-1]:
            pipeline_cfg[-1]['meta_keys'] = tuple(
                meta_key for meta_key in pipeline_cfg[-1]['meta_keys']
                if meta_key != 'img_id')

        load_img_idx = self._get_transform_idx(pipeline_cfg,
                                               'LoadImageFromFile')
        if load_img_idx == -1:
            raise ValueError(
                'LoadImageFromFile is not found in the test pipeline')
        pipeline_cfg[load_img_idx]['type'] = 'mmdet.InferencerLoader'
        return Compose(pipeline_cfg)

    def _get_transform_idx(self, pipeline_cfg: ConfigType, name: str) -> int:
        """Returns the index of the transform in a pipeline.

        If the transform is not found, returns -1.
        """
        for i, transform in enumerate(pipeline_cfg):
            if transform['type'] == name:
                return i
        return -1

    def _init_visualizer(self, cfg: ConfigType) -> Optional[Visualizer]:
        """Initialize visualizers.

        Args:
            cfg (ConfigType): Config containing the visualizer information.

        Returns:
            Visualizer or None: Visualizer initialized with config.
        """
        visualizer = super()._init_visualizer(cfg)
        visualizer.dataset_meta = self.model.dataset_meta
        return visualizer

    def _inputs_to_list(self, inputs: InputsType) -> list:
        """Preprocess the inputs to a list.

        Preprocess inputs to a list according to its type:

        - list or tuple: return inputs
        - str:
            - Directory path: return all files in the directory
            - other cases: return a list containing the string. The string
              could be a path to file, a url or other types of string according
              to the task.

        Args:
            inputs (InputsType): Inputs for the inferencer.

        Returns:
            list: List of input for the :meth:`preprocess`.
        """
        if isinstance(inputs, str):
            backend = get_file_backend(inputs)
            if hasattr(backend, 'isdir') and isdir(inputs):
                # Backends like HttpsBackend do not implement `isdir`, so only
                # those backends that implement `isdir` could accept the inputs
                # as a directory
                filename_list = list_dir_or_file(
                    inputs, list_dir=False, suffix=IMG_EXTENSIONS)
                inputs = [
                    join_path(inputs, filename) for filename in filename_list
                ]

        if not isinstance(inputs, (list, tuple)):
            inputs = [inputs]

        return list(inputs)

    def preprocess(self, inputs: InputsType, batch_size: int = 1, **kwargs):
        """Process the inputs into a model-feedable format.

        Customize your preprocess by overriding this method. Preprocess should
        return an iterable object, of which each item will be used as the
        input of ``model.test_step``.

        ``BaseInferencer.preprocess`` will return an iterable chunked data,
        which will be used in __call__ like this:

        .. code-block:: python

            def __call__(self, inputs, batch_size=1, **kwargs):
                chunked_data = self.preprocess(inputs, batch_size, **kwargs)
                for batch in chunked_data:
                    preds = self.forward(batch, **kwargs)

        Args:
            inputs (InputsType): Inputs given by user.
            batch_size (int): batch size. Defaults to 1.

        Yields:
            Any: Data processed by the ``pipeline`` and ``collate_fn``.
        """
        chunked_data = self._get_chunk_data(inputs, batch_size)
        yield from map(self.collate_fn, chunked_data)

    def _get_chunk_data(self, inputs: Iterable, chunk_size: int):
        """Get batch data from inputs.

        Args:
            inputs (Iterable): An iterable dataset.
            chunk_size (int): Equivalent to batch size.

        Yields:
            list: batch data.
        """
        inputs_iter = iter(inputs)
        while True:
            try:
                chunk_data = []
                for _ in range(chunk_size):
                    inputs_ = next(inputs_iter)
                    chunk_data.append((inputs_, self.pipeline(inputs_)))
                yield chunk_data
            except StopIteration:
                if chunk_data:
                    yield chunk_data
                break

    # TODO: Video and Webcam are currently not supported and
    #  may consume too much memory if your input folder has a lot of images.
    #  We will be optimized later.
    def __call__(self,
                 inputs: InputsType,
                 batch_size: int = 1,
                 return_vis: bool = False,
                 show: bool = False,
                 wait_time: int = 0,
                 no_save_vis: bool = False,
                 draw_pred: bool = True,
                 pred_score_thr: float = 0.3,
                 return_datasample: bool = False,
                 print_result: bool = False,
                 no_save_pred: bool = True,
                 out_dir: str = '',
                 **kwargs) -> dict:
        """Call the inferencer.

        Args:
            inputs (InputsType): Inputs for the inferencer.
            batch_size (int): Inference batch size. Defaults to 1.
            show (bool): Whether to display the visualization results in a
                popup window. Defaults to False.
            wait_time (float): The interval of show (s). Defaults to 0.
            no_save_vis (bool): Whether to force not to save prediction
                vis results. Defaults to False.
            draw_pred (bool): Whether to draw predicted bounding boxes.
                Defaults to True.
            pred_score_thr (float): Minimum score of bboxes to draw.
                Defaults to 0.3.
            return_datasample (bool): Whether to return results as
                :obj:`DetDataSample`. Defaults to False.
            print_result (bool): Whether to print the inference result w/o
                visualization to the console. Defaults to False.
            no_save_pred (bool): Whether to force not to save prediction
                results. Defaults to True.
            out_file: Dir to save the inference results or
                visualization. If left as empty, no file will be saved.
                Defaults to ''.

            **kwargs: Other keyword arguments passed to :meth:`preprocess`,
                :meth:`forward`, :meth:`visualize` and :meth:`postprocess`.
                Each key in kwargs should be in the corresponding set of
                ``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs``
                and ``postprocess_kwargs``.

        Returns:
            dict: Inference and visualization results.
        """
        (
            preprocess_kwargs,
            forward_kwargs,
            visualize_kwargs,
            postprocess_kwargs,
        ) = self._dispatch_kwargs(**kwargs)

        ori_inputs = self._inputs_to_list(inputs)
        inputs = self.preprocess(
            ori_inputs, batch_size=batch_size, **preprocess_kwargs)

        results_dict = {'predictions': [], 'visualization': []}
        for ori_inputs, data in track(inputs, description='Inference'):
            preds = self.forward(data, **forward_kwargs)
            visualization = self.visualize(
                ori_inputs,
                preds,
                return_vis=return_vis,
                show=show,
                wait_time=wait_time,
                draw_pred=draw_pred,
                pred_score_thr=pred_score_thr,
                no_save_vis=no_save_vis,
                img_out_dir=out_dir,
                **visualize_kwargs)
            results = self.postprocess(
                preds,
                visualization,
                return_datasample=return_datasample,
                print_result=print_result,
                no_save_pred=no_save_pred,
                pred_out_dir=out_dir,
                **postprocess_kwargs)
            results_dict['predictions'].extend(results['predictions'])
            if results['visualization'] is not None:
                results_dict['visualization'].extend(results['visualization'])
        return results_dict

    def visualize(self,
                  inputs: InputsType,
                  preds: PredType,
                  return_vis: bool = False,
                  show: bool = False,
                  wait_time: int = 0,
                  draw_pred: bool = True,
                  pred_score_thr: float = 0.3,
                  no_save_vis: bool = False,
                  img_out_dir: str = '',
                  **kwargs) -> Union[List[np.ndarray], None]:
        """Visualize predictions.

        Args:
            inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer.
            preds (List[:obj:`DetDataSample`]): Predictions of the model.
            return_vis (bool): Whether to return the visualization result.
                Defaults to False.
            show (bool): Whether to display the image in a popup window.
                Defaults to False.
            wait_time (float): The interval of show (s). Defaults to 0.
            draw_pred (bool): Whether to draw predicted bounding boxes.
                Defaults to True.
            pred_score_thr (float): Minimum score of bboxes to draw.
                Defaults to 0.3.
            no_save_vis (bool): Whether to force not to save prediction
                vis results. Defaults to False.
            img_out_dir (str): Output directory of visualization results.
                If left as empty, no file will be saved. Defaults to ''.

        Returns:
            List[np.ndarray] or None: Returns visualization results only if
            applicable.
        """
        if no_save_vis is True:
            img_out_dir = ''

        if not show and img_out_dir == '' and not return_vis:
            return None

        if self.visualizer is None:
            raise ValueError('Visualization needs the "visualizer" term'
                             'defined in the config, but got None.')

        results = []

        for single_input, pred in zip(inputs, preds):
            if isinstance(single_input, str):
                img_bytes = mmengine.fileio.get(single_input)
                img = mmcv.imfrombytes(img_bytes)
                img = img[:, :, ::-1]
                img_name = osp.basename(single_input)
            elif isinstance(single_input, np.ndarray):
                img = single_input.copy()
                img_num = str(self.num_visualized_imgs).zfill(8)
                img_name = f'{img_num}.jpg'
            else:
                raise ValueError('Unsupported input type: '
                                 f'{type(single_input)}')

            out_file = osp.join(img_out_dir, 'vis',
                                img_name) if img_out_dir != '' else None

            self.visualizer.add_datasample(
                img_name,
                img,
                pred,
                show=show,
                wait_time=wait_time,
                draw_gt=False,
                draw_pred=draw_pred,
                pred_score_thr=pred_score_thr,
                out_file=out_file,
            )
            results.append(self.visualizer.get_image())
            self.num_visualized_imgs += 1

        return results

    def postprocess(
        self,
        preds: PredType,
        visualization: Optional[List[np.ndarray]] = None,
        return_datasample: bool = False,
        print_result: bool = False,
        no_save_pred: bool = False,
        pred_out_dir: str = '',
        **kwargs,
    ) -> Dict:
        """Process the predictions and visualization results from ``forward``
        and ``visualize``.

        This method should be responsible for the following tasks:

        1. Convert datasamples into a json-serializable dict if needed.
        2. Pack the predictions and visualization results and return them.
        3. Dump or log the predictions.

        Args:
            preds (List[:obj:`DetDataSample`]): Predictions of the model.
            visualization (Optional[np.ndarray]): Visualized predictions.
            return_datasample (bool): Whether to use Datasample to store
                inference results. If False, dict will be used.
            print_result (bool): Whether to print the inference result w/o
                visualization to the console. Defaults to False.
            no_save_pred (bool): Whether to force not to save prediction
                results. Defaults to False.
            pred_out_dir: Dir to save the inference results w/o
                visualization. If left as empty, no file will be saved.
                Defaults to ''.

        Returns:
            dict: Inference and visualization results with key ``predictions``
            and ``visualization``.

            - ``visualization`` (Any): Returned by :meth:`visualize`.
            - ``predictions`` (dict or DataSample): Returned by
                :meth:`forward` and processed in :meth:`postprocess`.
                If ``return_datasample=False``, it usually should be a
                json-serializable dict containing only basic data elements such
                as strings and numbers.
        """
        if no_save_pred is True:
            pred_out_dir = ''

        result_dict = {}
        results = preds
        if not return_datasample:
            results = []
            for pred in preds:
                result = self.pred2dict(pred, pred_out_dir)
                results.append(result)
        elif pred_out_dir != '':
            warnings.warn('Currently does not support saving datasample '
                          'when return_datasample is set to True. '
                          'Prediction results are not saved!')
        # Add img to the results after printing and dumping
        result_dict['predictions'] = results
        if print_result:
            print(result_dict)
        result_dict['visualization'] = visualization
        return result_dict

    # TODO: The data format and fields saved in json need further discussion.
    #  Maybe should include model name, timestamp, filename, image info etc.
    def pred2dict(self,
                  data_sample: DetDataSample,
                  pred_out_dir: str = '') -> Dict:
        """Extract elements necessary to represent a prediction into a
        dictionary.

        It's better to contain only basic data elements such as strings and
        numbers in order to guarantee it's json-serializable.

        Args:
            data_sample (:obj:`DetDataSample`): Predictions of the model.
            pred_out_dir: Dir to save the inference results w/o
                visualization. If left as empty, no file will be saved.
                Defaults to ''.

        Returns:
            dict: Prediction results.
        """
        is_save_pred = True
        if pred_out_dir == '':
            is_save_pred = False

        if is_save_pred and 'img_path' in data_sample:
            img_path = osp.basename(data_sample.img_path)
            img_path = osp.splitext(img_path)[0]
            out_img_path = osp.join(pred_out_dir, 'preds',
                                    img_path + '_panoptic_seg.png')
            out_json_path = osp.join(pred_out_dir, 'preds', img_path + '.json')
        elif is_save_pred:
            out_img_path = osp.join(
                pred_out_dir, 'preds',
                f'{self.num_predicted_imgs}_panoptic_seg.png')
            out_json_path = osp.join(pred_out_dir, 'preds',
                                     f'{self.num_predicted_imgs}.json')
            self.num_predicted_imgs += 1

        result = {}
        if 'pred_instances' in data_sample:
            masks = data_sample.pred_instances.get('masks')
            pred_instances = data_sample.pred_instances.numpy()
            result = {
                'bboxes': pred_instances.bboxes.tolist(),
                'labels': pred_instances.labels.tolist(),
                'scores': pred_instances.scores.tolist()
            }
            if masks is not None:
                if pred_instances.bboxes.sum() == 0:
                    # Fake bbox, such as the SOLO.
                    bboxes = mask2bbox(masks.cpu()).numpy().tolist()
                    result['bboxes'] = bboxes
                encode_masks = encode_mask_results(pred_instances.masks)
                for encode_mask in encode_masks:
                    if isinstance(encode_mask['counts'], bytes):
                        encode_mask['counts'] = encode_mask['counts'].decode()
                result['masks'] = encode_masks

        if 'pred_panoptic_seg' in data_sample:
            if VOID is None:
                raise RuntimeError(
                    'panopticapi is not installed, please install it by: '
                    'pip install git+https://github.com/cocodataset/'
                    'panopticapi.git.')

            pan = data_sample.pred_panoptic_seg.sem_seg.cpu().numpy()[0]
            pan[pan % INSTANCE_OFFSET == len(
                self.model.dataset_meta['classes'])] = VOID
            pan = id2rgb(pan).astype(np.uint8)

            if is_save_pred:
                mmcv.imwrite(pan[:, :, ::-1], out_img_path)
                result['panoptic_seg_path'] = out_img_path
            else:
                result['panoptic_seg'] = pan

        if is_save_pred:
            mmengine.dump(result, out_json_path)

        return result