File size: 3,190 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
_base_ = './rtmdet_l_8xb32-300e_coco.py'
model = dict(
    bbox_head=dict(
        _delete_=True,
        type='RTMDetInsSepBNHead',
        num_classes=80,
        in_channels=256,
        stacked_convs=2,
        share_conv=True,
        pred_kernel_size=1,
        feat_channels=256,
        act_cfg=dict(type='SiLU', inplace=True),
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        anchor_generator=dict(
            type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]),
        bbox_coder=dict(type='DistancePointBBoxCoder'),
        loss_cls=dict(
            type='QualityFocalLoss',
            use_sigmoid=True,
            beta=2.0,
            loss_weight=1.0),
        loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
        loss_mask=dict(
            type='DiceLoss', loss_weight=2.0, eps=5e-6, reduction='mean')),
    test_cfg=dict(
        nms_pre=1000,
        min_bbox_size=0,
        score_thr=0.05,
        nms=dict(type='nms', iou_threshold=0.6),
        max_per_img=100,
        mask_thr_binary=0.5),
)

train_pipeline = [
    dict(
        type='LoadImageFromFile',
        file_client_args={{_base_.file_client_args}}),
    dict(
        type='LoadAnnotations',
        with_bbox=True,
        with_mask=True,
        poly2mask=False),
    dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
    dict(
        type='RandomResize',
        scale=(1280, 1280),
        ratio_range=(0.1, 2.0),
        keep_ratio=True),
    dict(
        type='RandomCrop',
        crop_size=(640, 640),
        recompute_bbox=True,
        allow_negative_crop=True),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', prob=0.5),
    dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(
        type='CachedMixUp',
        img_scale=(640, 640),
        ratio_range=(1.0, 1.0),
        max_cached_images=20,
        pad_val=(114, 114, 114)),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
    dict(type='PackDetInputs')
]

train_dataloader = dict(pin_memory=True, dataset=dict(pipeline=train_pipeline))

train_pipeline_stage2 = [
    dict(
        type='LoadImageFromFile',
        file_client_args={{_base_.file_client_args}}),
    dict(
        type='LoadAnnotations',
        with_bbox=True,
        with_mask=True,
        poly2mask=False),
    dict(
        type='RandomResize',
        scale=(640, 640),
        ratio_range=(0.1, 2.0),
        keep_ratio=True),
    dict(
        type='RandomCrop',
        crop_size=(640, 640),
        recompute_bbox=True,
        allow_negative_crop=True),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', prob=0.5),
    dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(type='PackDetInputs')
]
custom_hooks = [
    dict(
        type='EMAHook',
        ema_type='ExpMomentumEMA',
        momentum=0.0002,
        update_buffers=True,
        priority=49),
    dict(
        type='PipelineSwitchHook',
        switch_epoch=280,
        switch_pipeline=train_pipeline_stage2)
]

val_evaluator = dict(metric=['bbox', 'segm'])
test_evaluator = val_evaluator