File size: 2,756 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# dataset settings
dataset_type = 'DeepFashionDataset'
data_root = 'data/DeepFashion/In-shop/'

# file_client_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection/',
#         'data/': 's3://openmmlab/datasets/detection/'
#     }))
file_client_args = dict(backend='disk')

train_pipeline = [
    dict(type='LoadImageFromFile', file_client_args=file_client_args),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(type='Resize', scale=(750, 1101), keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PackDetInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile', file_client_args=file_client_args),
    dict(type='Resize', scale=(750, 1101), keep_ratio=True),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    batch_sampler=dict(type='AspectRatioBatchSampler'),
    dataset=dict(
        type='RepeatDataset',
        times=2,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file='Anno/segmentation/DeepFashion_segmentation_train.json',
            data_prefix=dict(img='Img/'),
            filter_cfg=dict(filter_empty_gt=True, min_size=32),
            pipeline=train_pipeline)))
val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='Anno/segmentation/DeepFashion_segmentation_query.json',
        data_prefix=dict(img='Img/'),
        test_mode=True,
        pipeline=test_pipeline))
test_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='Anno/segmentation/DeepFashion_segmentation_gallery.json',
        data_prefix=dict(img='Img/'),
        test_mode=True,
        pipeline=test_pipeline))

val_evaluator = dict(
    type='CocoMetric',
    ann_file=data_root +
    'Anno/segmentation/DeepFashion_segmentation_query.json',
    metric=['bbox', 'segm'],
    format_only=False)
test_evaluator = dict(
    type='CocoMetric',
    ann_file=data_root +
    'Anno/segmentation/DeepFashion_segmentation_gallery.json',
    metric=['bbox', 'segm'],
    format_only=False)