File size: 1,126 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# dataset settings
dataset_type = 'CIFAR10'
data_preprocessor = dict(
    num_classes=10,
    # RGB format normalization parameters
    mean=[125.307, 122.961, 113.8575],
    std=[51.5865, 50.847, 51.255],
    # loaded images are already RGB format
    to_rgb=False)

train_pipeline = [
    dict(type='RandomCrop', crop_size=32, padding=4),
    dict(type='RandomFlip', prob=0.5, direction='horizontal'),
    dict(type='PackClsInputs'),
]

test_pipeline = [
    dict(type='PackClsInputs'),
]

train_dataloader = dict(
    batch_size=16,
    num_workers=2,
    dataset=dict(
        type=dataset_type,
        data_prefix='data/cifar10',
        test_mode=False,
        pipeline=train_pipeline),
    sampler=dict(type='DefaultSampler', shuffle=True),
)

val_dataloader = dict(
    batch_size=16,
    num_workers=2,
    dataset=dict(
        type=dataset_type,
        data_prefix='data/cifar10/',
        test_mode=True,
        pipeline=test_pipeline),
    sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, ))

test_dataloader = val_dataloader
test_evaluator = val_evaluator