File size: 1,798 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
from .single_stage import SingleStageDetector


@MODELS.register_module()
class AutoAssign(SingleStageDetector):
    """Implementation of `AutoAssign: Differentiable Label Assignment for Dense
    Object Detection <https://arxiv.org/abs/2007.03496>`_

    Args:
        backbone (:obj:`ConfigDict` or dict): The backbone config.
        neck (:obj:`ConfigDict` or dict): The neck config.
        bbox_head (:obj:`ConfigDict` or dict): The bbox head config.
        train_cfg (:obj:`ConfigDict` or dict, optional): The training config
            of AutoAssign. Defaults to None.
        test_cfg (:obj:`ConfigDict` or dict, optional): The testing config
            of AutoAssign. Defaults to None.
        data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of
            :class:`DetDataPreprocessor` to process the input data.
            Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 backbone: ConfigType,
                 neck: ConfigType,
                 bbox_head: ConfigType,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 data_preprocessor: OptConfigType = None,
                 init_cfg: OptMultiConfig = None):
        super().__init__(
            backbone=backbone,
            neck=neck,
            bbox_head=bbox_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            data_preprocessor=data_preprocessor,
            init_cfg=init_cfg)