File size: 26,604 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d
from mmengine.model import caffe2_xavier_init
from mmengine.structures import InstanceData, PixelData
from torch import Tensor

from mmdet.models.layers.pixel_decoder import PixelDecoder
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import SampleList
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
                         OptMultiConfig, reduce_mean)
from ..layers import DetrTransformerDecoder, SinePositionalEncoding
from ..utils import multi_apply, preprocess_panoptic_gt
from .anchor_free_head import AnchorFreeHead


@MODELS.register_module()
class MaskFormerHead(AnchorFreeHead):
    """Implements the MaskFormer head.

    See `Per-Pixel Classification is Not All You Need for Semantic
    Segmentation <https://arxiv.org/pdf/2107.06278>`_ for details.

    Args:
        in_channels (list[int]): Number of channels in the input feature map.
        feat_channels (int): Number of channels for feature.
        out_channels (int): Number of channels for output.
        num_things_classes (int): Number of things.
        num_stuff_classes (int): Number of stuff.
        num_queries (int): Number of query in Transformer.
        pixel_decoder (:obj:`ConfigDict` or dict): Config for pixel
            decoder.
        enforce_decoder_input_project (bool): Whether to add a layer
            to change the embed_dim of transformer encoder in pixel decoder to
            the embed_dim of transformer decoder. Defaults to False.
        transformer_decoder (:obj:`ConfigDict` or dict): Config for
            transformer decoder.
        positional_encoding (:obj:`ConfigDict` or dict): Config for
            transformer decoder position encoding.
        loss_cls (:obj:`ConfigDict` or dict): Config of the classification
            loss. Defaults to `CrossEntropyLoss`.
        loss_mask (:obj:`ConfigDict` or dict): Config of the mask loss.
            Defaults to `FocalLoss`.
        loss_dice (:obj:`ConfigDict` or dict): Config of the dice loss.
            Defaults to `DiceLoss`.
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
            MaskFormer head.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
            MaskFormer head.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict], optional): Initialization config dict. Defaults to None.
    """

    def __init__(self,
                 in_channels: List[int],
                 feat_channels: int,
                 out_channels: int,
                 num_things_classes: int = 80,
                 num_stuff_classes: int = 53,
                 num_queries: int = 100,
                 pixel_decoder: ConfigType = ...,
                 enforce_decoder_input_project: bool = False,
                 transformer_decoder: ConfigType = ...,
                 positional_encoding: ConfigType = dict(
                     num_feats=128, normalize=True),
                 loss_cls: ConfigType = dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0,
                     class_weight=[1.0] * 133 + [0.1]),
                 loss_mask: ConfigType = dict(
                     type='FocalLoss',
                     use_sigmoid=True,
                     gamma=2.0,
                     alpha=0.25,
                     loss_weight=20.0),
                 loss_dice: ConfigType = dict(
                     type='DiceLoss',
                     use_sigmoid=True,
                     activate=True,
                     naive_dice=True,
                     loss_weight=1.0),
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 init_cfg: OptMultiConfig = None,
                 **kwargs) -> None:
        super(AnchorFreeHead, self).__init__(init_cfg=init_cfg)
        self.num_things_classes = num_things_classes
        self.num_stuff_classes = num_stuff_classes
        self.num_classes = self.num_things_classes + self.num_stuff_classes
        self.num_queries = num_queries

        pixel_decoder.update(
            in_channels=in_channels,
            feat_channels=feat_channels,
            out_channels=out_channels)
        self.pixel_decoder = MODELS.build(pixel_decoder)
        self.transformer_decoder = DetrTransformerDecoder(
            **transformer_decoder)
        self.decoder_embed_dims = self.transformer_decoder.embed_dims
        if type(self.pixel_decoder) == PixelDecoder and (
                self.decoder_embed_dims != in_channels[-1]
                or enforce_decoder_input_project):
            self.decoder_input_proj = Conv2d(
                in_channels[-1], self.decoder_embed_dims, kernel_size=1)
        else:
            self.decoder_input_proj = nn.Identity()
        self.decoder_pe = SinePositionalEncoding(**positional_encoding)
        self.query_embed = nn.Embedding(self.num_queries, out_channels)

        self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1)
        self.mask_embed = nn.Sequential(
            nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
            nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
            nn.Linear(feat_channels, out_channels))

        self.test_cfg = test_cfg
        self.train_cfg = train_cfg
        if train_cfg:
            self.assigner = TASK_UTILS.build(train_cfg['assigner'])
            self.sampler = TASK_UTILS.build(
                train_cfg['sampler'], default_args=dict(context=self))

        self.class_weight = loss_cls.class_weight
        self.loss_cls = MODELS.build(loss_cls)
        self.loss_mask = MODELS.build(loss_mask)
        self.loss_dice = MODELS.build(loss_dice)

    def init_weights(self) -> None:
        if isinstance(self.decoder_input_proj, Conv2d):
            caffe2_xavier_init(self.decoder_input_proj, bias=0)

        self.pixel_decoder.init_weights()

        for p in self.transformer_decoder.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def preprocess_gt(
            self, batch_gt_instances: InstanceList,
            batch_gt_semantic_segs: List[Optional[PixelData]]) -> InstanceList:
        """Preprocess the ground truth for all images.

        Args:
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``labels``, each is
                ground truth labels of each bbox, with shape (num_gts, )
                and ``masks``, each is ground truth masks of each instances
                of a image, shape (num_gts, h, w).
            gt_semantic_seg (list[Optional[PixelData]]): Ground truth of
                semantic segmentation, each with the shape (1, h, w).
                [0, num_thing_class - 1] means things,
                [num_thing_class, num_class-1] means stuff,
                255 means VOID. It's None when training instance segmentation.

        Returns:
            list[obj:`InstanceData`]: each contains the following keys

                - labels (Tensor): Ground truth class indices\
                    for a image, with shape (n, ), n is the sum of\
                    number of stuff type and number of instance in a image.
                - masks (Tensor): Ground truth mask for a\
                    image, with shape (n, h, w).
        """
        num_things_list = [self.num_things_classes] * len(batch_gt_instances)
        num_stuff_list = [self.num_stuff_classes] * len(batch_gt_instances)
        gt_labels_list = [
            gt_instances['labels'] for gt_instances in batch_gt_instances
        ]
        gt_masks_list = [
            gt_instances['masks'] for gt_instances in batch_gt_instances
        ]
        gt_semantic_segs = [
            None if gt_semantic_seg is None else gt_semantic_seg.sem_seg
            for gt_semantic_seg in batch_gt_semantic_segs
        ]
        targets = multi_apply(preprocess_panoptic_gt, gt_labels_list,
                              gt_masks_list, gt_semantic_segs, num_things_list,
                              num_stuff_list)
        labels, masks = targets
        batch_gt_instances = [
            InstanceData(labels=label, masks=mask)
            for label, mask in zip(labels, masks)
        ]
        return batch_gt_instances

    def get_targets(
        self,
        cls_scores_list: List[Tensor],
        mask_preds_list: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        return_sampling_results: bool = False
    ) -> Tuple[List[Union[Tensor, int]]]:
        """Compute classification and mask targets for all images for a decoder
        layer.

        Args:
            cls_scores_list (list[Tensor]): Mask score logits from a single
                decoder layer for all images. Each with shape (num_queries,
                cls_out_channels).
            mask_preds_list (list[Tensor]): Mask logits from a single decoder
                layer for all images. Each with shape (num_queries, h, w).
            batch_gt_instances (list[obj:`InstanceData`]): each contains
                ``labels`` and ``masks``.
            batch_img_metas (list[dict]): List of image meta information.
            return_sampling_results (bool): Whether to return the sampling
                results. Defaults to False.

        Returns:
            tuple: a tuple containing the following targets.

                - labels_list (list[Tensor]): Labels of all images.\
                    Each with shape (num_queries, ).
                - label_weights_list (list[Tensor]): Label weights\
                    of all images. Each with shape (num_queries, ).
                - mask_targets_list (list[Tensor]): Mask targets of\
                    all images. Each with shape (num_queries, h, w).
                - mask_weights_list (list[Tensor]): Mask weights of\
                    all images. Each with shape (num_queries, ).
                - avg_factor (int): Average factor that is used to average\
                    the loss. When using sampling method, avg_factor is
                    usually the sum of positive and negative priors. When
                    using `MaskPseudoSampler`, `avg_factor` is usually equal
                    to the number of positive priors.

            additional_returns: This function enables user-defined returns from
                `self._get_targets_single`. These returns are currently refined
                to properties at each feature map (i.e. having HxW dimension).
                The results will be concatenated after the end.
        """
        results = multi_apply(self._get_targets_single, cls_scores_list,
                              mask_preds_list, batch_gt_instances,
                              batch_img_metas)
        (labels_list, label_weights_list, mask_targets_list, mask_weights_list,
         pos_inds_list, neg_inds_list, sampling_results_list) = results[:7]
        rest_results = list(results[7:])

        avg_factor = sum(
            [results.avg_factor for results in sampling_results_list])

        res = (labels_list, label_weights_list, mask_targets_list,
               mask_weights_list, avg_factor)
        if return_sampling_results:
            res = res + (sampling_results_list)

        return res + tuple(rest_results)

    def _get_targets_single(self, cls_score: Tensor, mask_pred: Tensor,
                            gt_instances: InstanceData,
                            img_meta: dict) -> Tuple[Tensor]:
        """Compute classification and mask targets for one image.

        Args:
            cls_score (Tensor): Mask score logits from a single decoder layer
                for one image. Shape (num_queries, cls_out_channels).
            mask_pred (Tensor): Mask logits for a single decoder layer for one
                image. Shape (num_queries, h, w).
            gt_instances (:obj:`InstanceData`): It contains ``labels`` and
                ``masks``.
            img_meta (dict): Image informtation.

        Returns:
            tuple: a tuple containing the following for one image.

                - labels (Tensor): Labels of each image.
                    shape (num_queries, ).
                - label_weights (Tensor): Label weights of each image.
                    shape (num_queries, ).
                - mask_targets (Tensor): Mask targets of each image.
                    shape (num_queries, h, w).
                - mask_weights (Tensor): Mask weights of each image.
                    shape (num_queries, ).
                - pos_inds (Tensor): Sampled positive indices for each image.
                - neg_inds (Tensor): Sampled negative indices for each image.
                - sampling_result (:obj:`SamplingResult`): Sampling results.
        """
        gt_masks = gt_instances.masks
        gt_labels = gt_instances.labels

        target_shape = mask_pred.shape[-2:]
        if gt_masks.shape[0] > 0:
            gt_masks_downsampled = F.interpolate(
                gt_masks.unsqueeze(1).float(), target_shape,
                mode='nearest').squeeze(1).long()
        else:
            gt_masks_downsampled = gt_masks

        pred_instances = InstanceData(scores=cls_score, masks=mask_pred)
        downsampled_gt_instances = InstanceData(
            labels=gt_labels, masks=gt_masks_downsampled)
        # assign and sample
        assign_result = self.assigner.assign(
            pred_instances=pred_instances,
            gt_instances=downsampled_gt_instances,
            img_meta=img_meta)
        sampling_result = self.sampler.sample(
            assign_result=assign_result,
            pred_instances=pred_instances,
            gt_instances=gt_instances)
        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        # label target
        labels = gt_labels.new_full((self.num_queries, ),
                                    self.num_classes,
                                    dtype=torch.long)
        labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
        label_weights = gt_labels.new_ones(self.num_queries)

        # mask target
        mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds]
        mask_weights = mask_pred.new_zeros((self.num_queries, ))
        mask_weights[pos_inds] = 1.0

        return (labels, label_weights, mask_targets, mask_weights, pos_inds,
                neg_inds, sampling_result)

    def loss_by_feat(self, all_cls_scores: Tensor, all_mask_preds: Tensor,
                     batch_gt_instances: List[InstanceData],
                     batch_img_metas: List[dict]) -> Dict[str, Tensor]:
        """Loss function.

        Args:
            all_cls_scores (Tensor): Classification scores for all decoder
                layers with shape (num_decoder, batch_size, num_queries,
                cls_out_channels). Note `cls_out_channels` should includes
                background.
            all_mask_preds (Tensor): Mask scores for all decoder layers with
                shape (num_decoder, batch_size, num_queries, h, w).
            batch_gt_instances (list[obj:`InstanceData`]): each contains
                ``labels`` and ``masks``.
            batch_img_metas (list[dict]): List of image meta information.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        num_dec_layers = len(all_cls_scores)
        batch_gt_instances_list = [
            batch_gt_instances for _ in range(num_dec_layers)
        ]
        img_metas_list = [batch_img_metas for _ in range(num_dec_layers)]
        losses_cls, losses_mask, losses_dice = multi_apply(
            self._loss_by_feat_single, all_cls_scores, all_mask_preds,
            batch_gt_instances_list, img_metas_list)

        loss_dict = dict()
        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_mask'] = losses_mask[-1]
        loss_dict['loss_dice'] = losses_dice[-1]
        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_mask_i, loss_dice_i in zip(
                losses_cls[:-1], losses_mask[:-1], losses_dice[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_mask'] = loss_mask_i
            loss_dict[f'd{num_dec_layer}.loss_dice'] = loss_dice_i
            num_dec_layer += 1
        return loss_dict

    def _loss_by_feat_single(self, cls_scores: Tensor, mask_preds: Tensor,
                             batch_gt_instances: List[InstanceData],
                             batch_img_metas: List[dict]) -> Tuple[Tensor]:
        """Loss function for outputs from a single decoder layer.

        Args:
            cls_scores (Tensor): Mask score logits from a single decoder layer
                for all images. Shape (batch_size, num_queries,
                cls_out_channels). Note `cls_out_channels` should includes
                background.
            mask_preds (Tensor): Mask logits for a pixel decoder for all
                images. Shape (batch_size, num_queries, h, w).
            batch_gt_instances (list[obj:`InstanceData`]): each contains
                ``labels`` and ``masks``.
            batch_img_metas (list[dict]): List of image meta information.

        Returns:
            tuple[Tensor]: Loss components for outputs from a single decoder\
                layer.
        """
        num_imgs = cls_scores.size(0)
        cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
        mask_preds_list = [mask_preds[i] for i in range(num_imgs)]

        (labels_list, label_weights_list, mask_targets_list, mask_weights_list,
         avg_factor) = self.get_targets(cls_scores_list, mask_preds_list,
                                        batch_gt_instances, batch_img_metas)
        # shape (batch_size, num_queries)
        labels = torch.stack(labels_list, dim=0)
        # shape (batch_size, num_queries)
        label_weights = torch.stack(label_weights_list, dim=0)
        # shape (num_total_gts, h, w)
        mask_targets = torch.cat(mask_targets_list, dim=0)
        # shape (batch_size, num_queries)
        mask_weights = torch.stack(mask_weights_list, dim=0)

        # classfication loss
        # shape (batch_size * num_queries, )
        cls_scores = cls_scores.flatten(0, 1)
        labels = labels.flatten(0, 1)
        label_weights = label_weights.flatten(0, 1)

        class_weight = cls_scores.new_tensor(self.class_weight)
        loss_cls = self.loss_cls(
            cls_scores,
            labels,
            label_weights,
            avg_factor=class_weight[labels].sum())

        num_total_masks = reduce_mean(cls_scores.new_tensor([avg_factor]))
        num_total_masks = max(num_total_masks, 1)

        # extract positive ones
        # shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w)
        mask_preds = mask_preds[mask_weights > 0]
        target_shape = mask_targets.shape[-2:]

        if mask_targets.shape[0] == 0:
            # zero match
            loss_dice = mask_preds.sum()
            loss_mask = mask_preds.sum()
            return loss_cls, loss_mask, loss_dice

        # upsample to shape of target
        # shape (num_total_gts, h, w)
        mask_preds = F.interpolate(
            mask_preds.unsqueeze(1),
            target_shape,
            mode='bilinear',
            align_corners=False).squeeze(1)

        # dice loss
        loss_dice = self.loss_dice(
            mask_preds, mask_targets, avg_factor=num_total_masks)

        # mask loss
        # FocalLoss support input of shape (n, num_class)
        h, w = mask_preds.shape[-2:]
        # shape (num_total_gts, h, w) -> (num_total_gts * h * w, 1)
        mask_preds = mask_preds.reshape(-1, 1)
        # shape (num_total_gts, h, w) -> (num_total_gts * h * w)
        mask_targets = mask_targets.reshape(-1)
        # target is (1 - mask_targets) !!!
        loss_mask = self.loss_mask(
            mask_preds, 1 - mask_targets, avg_factor=num_total_masks * h * w)

        return loss_cls, loss_mask, loss_dice

    def forward(self, x: Tuple[Tensor],
                batch_data_samples: SampleList) -> Tuple[Tensor]:
        """Forward function.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each
                is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            tuple[Tensor]: a tuple contains two elements.

                - all_cls_scores (Tensor): Classification scores for each\
                    scale level. Each is a 4D-tensor with shape\
                    (num_decoder, batch_size, num_queries, cls_out_channels).\
                    Note `cls_out_channels` should includes background.
                - all_mask_preds (Tensor): Mask scores for each decoder\
                    layer. Each with shape (num_decoder, batch_size,\
                    num_queries, h, w).
        """
        batch_img_metas = [
            data_sample.metainfo for data_sample in batch_data_samples
        ]
        batch_size = len(batch_img_metas)
        input_img_h, input_img_w = batch_img_metas[0]['batch_input_shape']
        padding_mask = x[-1].new_ones((batch_size, input_img_h, input_img_w),
                                      dtype=torch.float32)
        for i in range(batch_size):
            img_h, img_w = batch_img_metas[i]['img_shape']
            padding_mask[i, :img_h, :img_w] = 0
        padding_mask = F.interpolate(
            padding_mask.unsqueeze(1), size=x[-1].shape[-2:],
            mode='nearest').to(torch.bool).squeeze(1)
        # when backbone is swin, memory is output of last stage of swin.
        # when backbone is r50, memory is output of tranformer encoder.
        mask_features, memory = self.pixel_decoder(x, batch_img_metas)
        pos_embed = self.decoder_pe(padding_mask)
        memory = self.decoder_input_proj(memory)
        # shape (batch_size, c, h, w) -> (batch_size, h*w, c)
        memory = memory.flatten(2).permute(0, 2, 1)
        pos_embed = pos_embed.flatten(2).permute(0, 2, 1)
        # shape (batch_size, h * w)
        padding_mask = padding_mask.flatten(1)
        # shape = (num_queries, embed_dims)
        query_embed = self.query_embed.weight
        # shape = (batch_size, num_queries, embed_dims)
        query_embed = query_embed.unsqueeze(0).repeat(batch_size, 1, 1)
        target = torch.zeros_like(query_embed)
        # shape (num_decoder, num_queries, batch_size, embed_dims)
        out_dec = self.transformer_decoder(
            query=target,
            key=memory,
            value=memory,
            query_pos=query_embed,
            key_pos=pos_embed,
            key_padding_mask=padding_mask)

        # cls_scores
        all_cls_scores = self.cls_embed(out_dec)

        # mask_preds
        mask_embed = self.mask_embed(out_dec)
        all_mask_preds = torch.einsum('lbqc,bchw->lbqhw', mask_embed,
                                      mask_features)

        return all_cls_scores, all_mask_preds

    def loss(
        self,
        x: Tuple[Tensor],
        batch_data_samples: SampleList,
    ) -> Dict[str, Tensor]:
        """Perform forward propagation and loss calculation of the panoptic
        head on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Multi-level features from the upstream
                network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        batch_img_metas = []
        batch_gt_instances = []
        batch_gt_semantic_segs = []
        for data_sample in batch_data_samples:
            batch_img_metas.append(data_sample.metainfo)
            batch_gt_instances.append(data_sample.gt_instances)
            if 'gt_sem_seg' in data_sample:
                batch_gt_semantic_segs.append(data_sample.gt_sem_seg)
            else:
                batch_gt_semantic_segs.append(None)

        # forward
        all_cls_scores, all_mask_preds = self(x, batch_data_samples)

        # preprocess ground truth
        batch_gt_instances = self.preprocess_gt(batch_gt_instances,
                                                batch_gt_semantic_segs)

        # loss
        losses = self.loss_by_feat(all_cls_scores, all_mask_preds,
                                   batch_gt_instances, batch_img_metas)

        return losses

    def predict(self, x: Tuple[Tensor],
                batch_data_samples: SampleList) -> Tuple[Tensor]:
        """Test without augmentaton.

        Args:
            x (tuple[Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            tuple[Tensor]: A tuple contains two tensors.

                - mask_cls_results (Tensor): Mask classification logits,\
                    shape (batch_size, num_queries, cls_out_channels).
                    Note `cls_out_channels` should includes background.
                - mask_pred_results (Tensor): Mask logits, shape \
                    (batch_size, num_queries, h, w).
        """
        batch_img_metas = [
            data_sample.metainfo for data_sample in batch_data_samples
        ]
        all_cls_scores, all_mask_preds = self(x, batch_data_samples)
        mask_cls_results = all_cls_scores[-1]
        mask_pred_results = all_mask_preds[-1]

        # upsample masks
        img_shape = batch_img_metas[0]['batch_input_shape']
        mask_pred_results = F.interpolate(
            mask_pred_results,
            size=(img_shape[0], img_shape[1]),
            mode='bilinear',
            align_corners=False)

        return mask_cls_results, mask_pred_results