File size: 21,448 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.ops import DeformConv2d
from mmengine.config import ConfigDict
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.utils import InstanceList, OptInstanceList, OptMultiConfig
from ..utils import filter_scores_and_topk, multi_apply
from .anchor_free_head import AnchorFreeHead

INF = 1e8


class FeatureAlign(BaseModule):
    """Feature Align Module.

    Feature Align Module is implemented based on DCN v1.
    It uses anchor shape prediction rather than feature map to
    predict offsets of deform conv layer.

    Args:
        in_channels (int): Number of channels in the input feature map.
        out_channels (int): Number of channels in the output feature map.
        kernel_size (int): Size of the convolution kernel.
            ``norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)``.
        deform_groups: (int): Group number of DCN in
            FeatureAdaption module.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict], optional): Initialization config dict.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int = 3,
        deform_groups: int = 4,
        init_cfg: OptMultiConfig = dict(
            type='Normal',
            layer='Conv2d',
            std=0.1,
            override=dict(type='Normal', name='conv_adaption', std=0.01))
    ) -> None:
        super().__init__(init_cfg=init_cfg)
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            4, deform_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deform_groups=deform_groups)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x: Tensor, shape: Tensor) -> Tensor:
        """Forward function of feature align module.

        Args:
            x (Tensor): Features from the upstream network.
            shape (Tensor): Exponential of bbox predictions.

        Returns:
            x (Tensor): The aligned features.
        """
        offset = self.conv_offset(shape)
        x = self.relu(self.conv_adaption(x, offset))
        return x


@MODELS.register_module()
class FoveaHead(AnchorFreeHead):
    """Detection Head of `FoveaBox: Beyond Anchor-based Object Detector.

    <https://arxiv.org/abs/1904.03797>`_.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        base_edge_list (list[int]): List of edges.
        scale_ranges (list[tuple]): Range of scales.
        sigma (float): Super parameter of ``FoveaHead``.
        with_deform (bool):  Whether use deform conv.
        deform_groups (int): Deformable conv group size.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict], optional): Initialization config dict.
    """

    def __init__(self,
                 num_classes: int,
                 in_channels: int,
                 base_edge_list: List[int] = (16, 32, 64, 128, 256),
                 scale_ranges: List[tuple] = ((8, 32), (16, 64), (32, 128),
                                              (64, 256), (128, 512)),
                 sigma: float = 0.4,
                 with_deform: bool = False,
                 deform_groups: int = 4,
                 init_cfg: OptMultiConfig = dict(
                     type='Normal',
                     layer='Conv2d',
                     std=0.01,
                     override=dict(
                         type='Normal',
                         name='conv_cls',
                         std=0.01,
                         bias_prob=0.01)),
                 **kwargs) -> None:
        self.base_edge_list = base_edge_list
        self.scale_ranges = scale_ranges
        self.sigma = sigma
        self.with_deform = with_deform
        self.deform_groups = deform_groups
        super().__init__(
            num_classes=num_classes,
            in_channels=in_channels,
            init_cfg=init_cfg,
            **kwargs)

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        # box branch
        super()._init_reg_convs()
        self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)

        # cls branch
        if not self.with_deform:
            super()._init_cls_convs()
            self.conv_cls = nn.Conv2d(
                self.feat_channels, self.cls_out_channels, 3, padding=1)
        else:
            self.cls_convs = nn.ModuleList()
            self.cls_convs.append(
                ConvModule(
                    self.feat_channels, (self.feat_channels * 4),
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    bias=self.norm_cfg is None))
            self.cls_convs.append(
                ConvModule((self.feat_channels * 4), (self.feat_channels * 4),
                           1,
                           stride=1,
                           padding=0,
                           conv_cfg=self.conv_cfg,
                           norm_cfg=self.norm_cfg,
                           bias=self.norm_cfg is None))
            self.feature_adaption = FeatureAlign(
                self.feat_channels,
                self.feat_channels,
                kernel_size=3,
                deform_groups=self.deform_groups)
            self.conv_cls = nn.Conv2d(
                int(self.feat_channels * 4),
                self.cls_out_channels,
                3,
                padding=1)

    def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]:
        """Forward features of a single scale level.

        Args:
            x (Tensor): FPN feature maps of the specified stride.

        Returns:
            tuple: scores for each class and bbox predictions of input
            feature maps.
        """
        cls_feat = x
        reg_feat = x
        for reg_layer in self.reg_convs:
            reg_feat = reg_layer(reg_feat)
        bbox_pred = self.conv_reg(reg_feat)
        if self.with_deform:
            cls_feat = self.feature_adaption(cls_feat, bbox_pred.exp())
        for cls_layer in self.cls_convs:
            cls_feat = cls_layer(cls_feat)
        cls_score = self.conv_cls(cls_feat)
        return cls_score, bbox_pred

    def loss_by_feat(
        self,
        cls_scores: List[Tensor],
        bbox_preds: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_priors * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_priors * 4.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert len(cls_scores) == len(bbox_preds)

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=bbox_preds[0].dtype,
            device=bbox_preds[0].device)
        num_imgs = cls_scores[0].size(0)
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_cls_scores = torch.cat(flatten_cls_scores)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds)
        flatten_labels, flatten_bbox_targets = self.get_targets(
            batch_gt_instances, featmap_sizes, priors)

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        pos_inds = ((flatten_labels >= 0)
                    & (flatten_labels < self.num_classes)).nonzero().view(-1)
        num_pos = len(pos_inds)

        loss_cls = self.loss_cls(
            flatten_cls_scores, flatten_labels, avg_factor=num_pos + num_imgs)
        if num_pos > 0:
            pos_bbox_preds = flatten_bbox_preds[pos_inds]
            pos_bbox_targets = flatten_bbox_targets[pos_inds]
            pos_weights = pos_bbox_targets.new_ones(pos_bbox_targets.size())
            loss_bbox = self.loss_bbox(
                pos_bbox_preds,
                pos_bbox_targets,
                pos_weights,
                avg_factor=num_pos)
        else:
            loss_bbox = torch.tensor(
                0,
                dtype=flatten_bbox_preds.dtype,
                device=flatten_bbox_preds.device)
        return dict(loss_cls=loss_cls, loss_bbox=loss_bbox)

    def get_targets(
            self, batch_gt_instances: InstanceList, featmap_sizes: List[tuple],
            priors_list: List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]:
        """Compute regression and classification for priors in multiple images.

        Args:
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            featmap_sizes (list[tuple]): Size tuple of feature maps.
            priors_list (list[Tensor]): Priors list of each fpn level, each has
                shape (num_priors, 2).

        Returns:
            tuple: Targets of each level.

            - flatten_labels (list[Tensor]): Labels of each level.
            - flatten_bbox_targets (list[Tensor]): BBox targets of each
              level.
        """
        label_list, bbox_target_list = multi_apply(
            self._get_targets_single,
            batch_gt_instances,
            featmap_size_list=featmap_sizes,
            priors_list=priors_list)
        flatten_labels = [
            torch.cat([
                labels_level_img.flatten() for labels_level_img in labels_level
            ]) for labels_level in zip(*label_list)
        ]
        flatten_bbox_targets = [
            torch.cat([
                bbox_targets_level_img.reshape(-1, 4)
                for bbox_targets_level_img in bbox_targets_level
            ]) for bbox_targets_level in zip(*bbox_target_list)
        ]
        flatten_labels = torch.cat(flatten_labels)
        flatten_bbox_targets = torch.cat(flatten_bbox_targets)
        return flatten_labels, flatten_bbox_targets

    def _get_targets_single(self,
                            gt_instances: InstanceData,
                            featmap_size_list: List[tuple] = None,
                            priors_list: List[Tensor] = None) -> tuple:
        """Compute regression and classification targets for a single image.

        Args:
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It usually includes ``bboxes`` and ``labels``
                attributes.
            featmap_size_list (list[tuple]): Size tuple of feature maps.
            priors_list (list[Tensor]): Priors of each fpn level, each has
                shape (num_priors, 2).

        Returns:
            tuple:

            - label_list (list[Tensor]): Labels of all anchors in the image.
            - box_target_list (list[Tensor]): BBox targets of all anchors in
              the image.
        """
        gt_bboxes_raw = gt_instances.bboxes
        gt_labels_raw = gt_instances.labels
        gt_areas = torch.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) *
                              (gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1]))
        label_list = []
        bbox_target_list = []
        # for each pyramid, find the cls and box target
        for base_len, (lower_bound, upper_bound), stride, featmap_size, \
            priors in zip(self.base_edge_list, self.scale_ranges,
                          self.strides, featmap_size_list, priors_list):
            # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
            priors = priors.view(*featmap_size, 2)
            x, y = priors[..., 0], priors[..., 1]
            labels = gt_labels_raw.new_full(featmap_size, self.num_classes)
            bbox_targets = gt_bboxes_raw.new_ones(featmap_size[0],
                                                  featmap_size[1], 4)
            # scale assignment
            hit_indices = ((gt_areas >= lower_bound) &
                           (gt_areas <= upper_bound)).nonzero().flatten()
            if len(hit_indices) == 0:
                label_list.append(labels)
                bbox_target_list.append(torch.log(bbox_targets))
                continue
            _, hit_index_order = torch.sort(-gt_areas[hit_indices])
            hit_indices = hit_indices[hit_index_order]
            gt_bboxes = gt_bboxes_raw[hit_indices, :] / stride
            gt_labels = gt_labels_raw[hit_indices]
            half_w = 0.5 * (gt_bboxes[:, 2] - gt_bboxes[:, 0])
            half_h = 0.5 * (gt_bboxes[:, 3] - gt_bboxes[:, 1])
            # valid fovea area: left, right, top, down
            pos_left = torch.ceil(
                gt_bboxes[:, 0] + (1 - self.sigma) * half_w - 0.5).long(). \
                clamp(0, featmap_size[1] - 1)
            pos_right = torch.floor(
                gt_bboxes[:, 0] + (1 + self.sigma) * half_w - 0.5).long(). \
                clamp(0, featmap_size[1] - 1)
            pos_top = torch.ceil(
                gt_bboxes[:, 1] + (1 - self.sigma) * half_h - 0.5).long(). \
                clamp(0, featmap_size[0] - 1)
            pos_down = torch.floor(
                gt_bboxes[:, 1] + (1 + self.sigma) * half_h - 0.5).long(). \
                clamp(0, featmap_size[0] - 1)
            for px1, py1, px2, py2, label, (gt_x1, gt_y1, gt_x2, gt_y2) in \
                    zip(pos_left, pos_top, pos_right, pos_down, gt_labels,
                        gt_bboxes_raw[hit_indices, :]):
                labels[py1:py2 + 1, px1:px2 + 1] = label
                bbox_targets[py1:py2 + 1, px1:px2 + 1, 0] = \
                    (x[py1:py2 + 1, px1:px2 + 1] - gt_x1) / base_len
                bbox_targets[py1:py2 + 1, px1:px2 + 1, 1] = \
                    (y[py1:py2 + 1, px1:px2 + 1] - gt_y1) / base_len
                bbox_targets[py1:py2 + 1, px1:px2 + 1, 2] = \
                    (gt_x2 - x[py1:py2 + 1, px1:px2 + 1]) / base_len
                bbox_targets[py1:py2 + 1, px1:px2 + 1, 3] = \
                    (gt_y2 - y[py1:py2 + 1, px1:px2 + 1]) / base_len
            bbox_targets = bbox_targets.clamp(min=1. / 16, max=16.)
            label_list.append(labels)
            bbox_target_list.append(torch.log(bbox_targets))
        return label_list, bbox_target_list

    # Same as base_dense_head/_predict_by_feat_single except self._bbox_decode
    def _predict_by_feat_single(self,
                                cls_score_list: List[Tensor],
                                bbox_pred_list: List[Tensor],
                                score_factor_list: List[Tensor],
                                mlvl_priors: List[Tensor],
                                img_meta: dict,
                                cfg: Optional[ConfigDict] = None,
                                rescale: bool = False,
                                with_nms: bool = True) -> InstanceData:
        """Transform a single image's features extracted from the head into
        bbox results.

        Args:
            cls_score_list (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_priors * num_classes, H, W).
            bbox_pred_list (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has shape
                (num_priors * 4, H, W).
            score_factor_list (list[Tensor]): Score factor from all scale
                levels of a single image, each item has shape
                (num_priors * 1, H, W).
            mlvl_priors (list[Tensor]): Each element in the list is
                the priors of a single level in feature pyramid, has shape
                (num_priors, 2).
            img_meta (dict): Image meta info.
            cfg (ConfigDict, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to True.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4),
              the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        cfg = self.test_cfg if cfg is None else cfg
        assert len(cls_score_list) == len(bbox_pred_list)
        img_shape = img_meta['img_shape']
        nms_pre = cfg.get('nms_pre', -1)

        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_labels = []
        for level_idx, (cls_score, bbox_pred, stride, base_len, priors) in \
                enumerate(zip(cls_score_list, bbox_pred_list, self.strides,
                              self.base_edge_list, mlvl_priors)):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)

            scores = cls_score.permute(1, 2, 0).reshape(
                -1, self.cls_out_channels).sigmoid()

            # After https://github.com/open-mmlab/mmdetection/pull/6268/,
            # this operation keeps fewer bboxes under the same `nms_pre`.
            # There is no difference in performance for most models. If you
            # find a slight drop in performance, you can set a larger
            # `nms_pre` than before.
            results = filter_scores_and_topk(
                scores, cfg.score_thr, nms_pre,
                dict(bbox_pred=bbox_pred, priors=priors))
            scores, labels, _, filtered_results = results

            bbox_pred = filtered_results['bbox_pred']
            priors = filtered_results['priors']

            bboxes = self._bbox_decode(priors, bbox_pred, base_len, img_shape)

            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_labels.append(labels)

        results = InstanceData()
        results.bboxes = torch.cat(mlvl_bboxes)
        results.scores = torch.cat(mlvl_scores)
        results.labels = torch.cat(mlvl_labels)

        return self._bbox_post_process(
            results=results,
            cfg=cfg,
            rescale=rescale,
            with_nms=with_nms,
            img_meta=img_meta)

    def _bbox_decode(self, priors: Tensor, bbox_pred: Tensor, base_len: int,
                     max_shape: int) -> Tensor:
        """Function to decode bbox.

        Args:
            priors (Tensor): Center proiors of an image, has shape
                (num_instances, 2).
            bbox_preds (Tensor): Box energies / deltas for all instances,
                has shape (batch_size, num_instances, 4).
            base_len (int): The base length.
            max_shape (int): The max shape of bbox.

        Returns:
            Tensor: Decoded bboxes in (tl_x, tl_y, br_x, br_y) format. Has
            shape (batch_size, num_instances, 4).
        """
        bbox_pred = bbox_pred.exp()

        y = priors[:, 1]
        x = priors[:, 0]
        x1 = (x - base_len * bbox_pred[:, 0]). \
            clamp(min=0, max=max_shape[1] - 1)
        y1 = (y - base_len * bbox_pred[:, 1]). \
            clamp(min=0, max=max_shape[0] - 1)
        x2 = (x + base_len * bbox_pred[:, 2]). \
            clamp(min=0, max=max_shape[1] - 1)
        y2 = (y + base_len * bbox_pred[:, 3]). \
            clamp(min=0, max=max_shape[0] - 1)
        decoded_bboxes = torch.stack([x1, y1, x2, y2], -1)
        return decoded_bboxes