File size: 19,856 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple

import torch
import torch.nn as nn
from mmcv.cnn import Scale
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.utils import (ConfigType, InstanceList, MultiConfig,
                         OptInstanceList, RangeType, reduce_mean)
from ..utils import multi_apply
from .anchor_free_head import AnchorFreeHead

INF = 1e8


@MODELS.register_module()
class FCOSHead(AnchorFreeHead):
    """Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_.

    The FCOS head does not use anchor boxes. Instead bounding boxes are
    predicted at each pixel and a centerness measure is used to suppress
    low-quality predictions.
    Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training
    tricks used in official repo, which will bring remarkable mAP gains
    of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for
    more detail.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        strides (Sequence[int] or Sequence[Tuple[int, int]]): Strides of points
            in multiple feature levels. Defaults to (4, 8, 16, 32, 64).
        regress_ranges (Sequence[Tuple[int, int]]): Regress range of multiple
            level points.
        center_sampling (bool): If true, use center sampling.
            Defaults to False.
        center_sample_radius (float): Radius of center sampling.
            Defaults to 1.5.
        norm_on_bbox (bool): If true, normalize the regression targets with
            FPN strides. Defaults to False.
        centerness_on_reg (bool): If true, position centerness on the
            regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
            Defaults to False.
        conv_bias (bool or str): If specified as `auto`, it will be decided by
            the norm_cfg. Bias of conv will be set as True if `norm_cfg` is
            None, otherwise False. Defaults to "auto".
        loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
        loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
        loss_centerness (:obj:`ConfigDict`, or dict): Config of centerness
            loss.
        norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
            config norm layer.  Defaults to
            ``norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)``.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict]): Initialization config dict.

    Example:
        >>> self = FCOSHead(11, 7)
        >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
        >>> cls_score, bbox_pred, centerness = self.forward(feats)
        >>> assert len(cls_score) == len(self.scales)
    """  # noqa: E501

    def __init__(self,
                 num_classes: int,
                 in_channels: int,
                 regress_ranges: RangeType = ((-1, 64), (64, 128), (128, 256),
                                              (256, 512), (512, INF)),
                 center_sampling: bool = False,
                 center_sample_radius: float = 1.5,
                 norm_on_bbox: bool = False,
                 centerness_on_reg: bool = False,
                 loss_cls: ConfigType = dict(
                     type='FocalLoss',
                     use_sigmoid=True,
                     gamma=2.0,
                     alpha=0.25,
                     loss_weight=1.0),
                 loss_bbox: ConfigType = dict(type='IoULoss', loss_weight=1.0),
                 loss_centerness: ConfigType = dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 norm_cfg: ConfigType = dict(
                     type='GN', num_groups=32, requires_grad=True),
                 init_cfg: MultiConfig = dict(
                     type='Normal',
                     layer='Conv2d',
                     std=0.01,
                     override=dict(
                         type='Normal',
                         name='conv_cls',
                         std=0.01,
                         bias_prob=0.01)),
                 **kwargs) -> None:
        self.regress_ranges = regress_ranges
        self.center_sampling = center_sampling
        self.center_sample_radius = center_sample_radius
        self.norm_on_bbox = norm_on_bbox
        self.centerness_on_reg = centerness_on_reg
        super().__init__(
            num_classes=num_classes,
            in_channels=in_channels,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            norm_cfg=norm_cfg,
            init_cfg=init_cfg,
            **kwargs)
        self.loss_centerness = MODELS.build(loss_centerness)

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        super()._init_layers()
        self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
        self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])

    def forward(
            self, x: Tuple[Tensor]
    ) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]:
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple: A tuple of each level outputs.

            - cls_scores (list[Tensor]): Box scores for each scale level, \
            each is a 4D-tensor, the channel number is \
            num_points * num_classes.
            - bbox_preds (list[Tensor]): Box energies / deltas for each \
            scale level, each is a 4D-tensor, the channel number is \
            num_points * 4.
            - centernesses (list[Tensor]): centerness for each scale level, \
            each is a 4D-tensor, the channel number is num_points * 1.
        """
        return multi_apply(self.forward_single, x, self.scales, self.strides)

    def forward_single(self, x: Tensor, scale: Scale,
                       stride: int) -> Tuple[Tensor, Tensor, Tensor]:
        """Forward features of a single scale level.

        Args:
            x (Tensor): FPN feature maps of the specified stride.
            scale (:obj:`mmcv.cnn.Scale`): Learnable scale module to resize
                the bbox prediction.
            stride (int): The corresponding stride for feature maps, only
                used to normalize the bbox prediction when self.norm_on_bbox
                is True.

        Returns:
            tuple: scores for each class, bbox predictions and centerness
            predictions of input feature maps.
        """
        cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x)
        if self.centerness_on_reg:
            centerness = self.conv_centerness(reg_feat)
        else:
            centerness = self.conv_centerness(cls_feat)
        # scale the bbox_pred of different level
        # float to avoid overflow when enabling FP16
        bbox_pred = scale(bbox_pred).float()
        if self.norm_on_bbox:
            # bbox_pred needed for gradient computation has been modified
            # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
            # F.relu(bbox_pred) with bbox_pred.clamp(min=0)
            bbox_pred = bbox_pred.clamp(min=0)
            if not self.training:
                bbox_pred *= stride
        else:
            bbox_pred = bbox_pred.exp()
        return cls_score, bbox_pred, centerness

    def loss_by_feat(
        self,
        cls_scores: List[Tensor],
        bbox_preds: List[Tensor],
        centernesses: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_points * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_points * 4.
            centernesses (list[Tensor]): centerness for each scale level, each
                is a 4D-tensor, the channel number is num_points * 1.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert len(cls_scores) == len(bbox_preds) == len(centernesses)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        all_level_points = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=bbox_preds[0].dtype,
            device=bbox_preds[0].device)
        labels, bbox_targets = self.get_targets(all_level_points,
                                                batch_gt_instances)

        num_imgs = cls_scores[0].size(0)
        # flatten cls_scores, bbox_preds and centerness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_centerness = [
            centerness.permute(0, 2, 3, 1).reshape(-1)
            for centerness in centernesses
        ]
        flatten_cls_scores = torch.cat(flatten_cls_scores)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds)
        flatten_centerness = torch.cat(flatten_centerness)
        flatten_labels = torch.cat(labels)
        flatten_bbox_targets = torch.cat(bbox_targets)
        # repeat points to align with bbox_preds
        flatten_points = torch.cat(
            [points.repeat(num_imgs, 1) for points in all_level_points])

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        bg_class_ind = self.num_classes
        pos_inds = ((flatten_labels >= 0)
                    & (flatten_labels < bg_class_ind)).nonzero().reshape(-1)
        num_pos = torch.tensor(
            len(pos_inds), dtype=torch.float, device=bbox_preds[0].device)
        num_pos = max(reduce_mean(num_pos), 1.0)
        loss_cls = self.loss_cls(
            flatten_cls_scores, flatten_labels, avg_factor=num_pos)

        pos_bbox_preds = flatten_bbox_preds[pos_inds]
        pos_centerness = flatten_centerness[pos_inds]
        pos_bbox_targets = flatten_bbox_targets[pos_inds]
        pos_centerness_targets = self.centerness_target(pos_bbox_targets)
        # centerness weighted iou loss
        centerness_denorm = max(
            reduce_mean(pos_centerness_targets.sum().detach()), 1e-6)

        if len(pos_inds) > 0:
            pos_points = flatten_points[pos_inds]
            pos_decoded_bbox_preds = self.bbox_coder.decode(
                pos_points, pos_bbox_preds)
            pos_decoded_target_preds = self.bbox_coder.decode(
                pos_points, pos_bbox_targets)
            loss_bbox = self.loss_bbox(
                pos_decoded_bbox_preds,
                pos_decoded_target_preds,
                weight=pos_centerness_targets,
                avg_factor=centerness_denorm)
            loss_centerness = self.loss_centerness(
                pos_centerness, pos_centerness_targets, avg_factor=num_pos)
        else:
            loss_bbox = pos_bbox_preds.sum()
            loss_centerness = pos_centerness.sum()

        return dict(
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_centerness=loss_centerness)

    def get_targets(
            self, points: List[Tensor], batch_gt_instances: InstanceList
    ) -> Tuple[List[Tensor], List[Tensor]]:
        """Compute regression, classification and centerness targets for points
        in multiple images.

        Args:
            points (list[Tensor]): Points of each fpn level, each has shape
                (num_points, 2).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.

        Returns:
            tuple: Targets of each level.

            - concat_lvl_labels (list[Tensor]): Labels of each level.
            - concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \
            level.
        """
        assert len(points) == len(self.regress_ranges)
        num_levels = len(points)
        # expand regress ranges to align with points
        expanded_regress_ranges = [
            points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
                points[i]) for i in range(num_levels)
        ]
        # concat all levels points and regress ranges
        concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
        concat_points = torch.cat(points, dim=0)

        # the number of points per img, per lvl
        num_points = [center.size(0) for center in points]

        # get labels and bbox_targets of each image
        labels_list, bbox_targets_list = multi_apply(
            self._get_targets_single,
            batch_gt_instances,
            points=concat_points,
            regress_ranges=concat_regress_ranges,
            num_points_per_lvl=num_points)

        # split to per img, per level
        labels_list = [labels.split(num_points, 0) for labels in labels_list]
        bbox_targets_list = [
            bbox_targets.split(num_points, 0)
            for bbox_targets in bbox_targets_list
        ]

        # concat per level image
        concat_lvl_labels = []
        concat_lvl_bbox_targets = []
        for i in range(num_levels):
            concat_lvl_labels.append(
                torch.cat([labels[i] for labels in labels_list]))
            bbox_targets = torch.cat(
                [bbox_targets[i] for bbox_targets in bbox_targets_list])
            if self.norm_on_bbox:
                bbox_targets = bbox_targets / self.strides[i]
            concat_lvl_bbox_targets.append(bbox_targets)
        return concat_lvl_labels, concat_lvl_bbox_targets

    def _get_targets_single(
            self, gt_instances: InstanceData, points: Tensor,
            regress_ranges: Tensor,
            num_points_per_lvl: List[int]) -> Tuple[Tensor, Tensor]:
        """Compute regression and classification targets for a single image."""
        num_points = points.size(0)
        num_gts = len(gt_instances)
        gt_bboxes = gt_instances.bboxes
        gt_labels = gt_instances.labels

        if num_gts == 0:
            return gt_labels.new_full((num_points,), self.num_classes), \
                   gt_bboxes.new_zeros((num_points, 4))

        areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
            gt_bboxes[:, 3] - gt_bboxes[:, 1])
        # TODO: figure out why these two are different
        # areas = areas[None].expand(num_points, num_gts)
        areas = areas[None].repeat(num_points, 1)
        regress_ranges = regress_ranges[:, None, :].expand(
            num_points, num_gts, 2)
        gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
        xs, ys = points[:, 0], points[:, 1]
        xs = xs[:, None].expand(num_points, num_gts)
        ys = ys[:, None].expand(num_points, num_gts)

        left = xs - gt_bboxes[..., 0]
        right = gt_bboxes[..., 2] - xs
        top = ys - gt_bboxes[..., 1]
        bottom = gt_bboxes[..., 3] - ys
        bbox_targets = torch.stack((left, top, right, bottom), -1)

        if self.center_sampling:
            # condition1: inside a `center bbox`
            radius = self.center_sample_radius
            center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2
            center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2
            center_gts = torch.zeros_like(gt_bboxes)
            stride = center_xs.new_zeros(center_xs.shape)

            # project the points on current lvl back to the `original` sizes
            lvl_begin = 0
            for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
                lvl_end = lvl_begin + num_points_lvl
                stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
                lvl_begin = lvl_end

            x_mins = center_xs - stride
            y_mins = center_ys - stride
            x_maxs = center_xs + stride
            y_maxs = center_ys + stride
            center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0],
                                             x_mins, gt_bboxes[..., 0])
            center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1],
                                             y_mins, gt_bboxes[..., 1])
            center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2],
                                             gt_bboxes[..., 2], x_maxs)
            center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3],
                                             gt_bboxes[..., 3], y_maxs)

            cb_dist_left = xs - center_gts[..., 0]
            cb_dist_right = center_gts[..., 2] - xs
            cb_dist_top = ys - center_gts[..., 1]
            cb_dist_bottom = center_gts[..., 3] - ys
            center_bbox = torch.stack(
                (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
            inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
        else:
            # condition1: inside a gt bbox
            inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0

        # condition2: limit the regression range for each location
        max_regress_distance = bbox_targets.max(-1)[0]
        inside_regress_range = (
            (max_regress_distance >= regress_ranges[..., 0])
            & (max_regress_distance <= regress_ranges[..., 1]))

        # if there are still more than one objects for a location,
        # we choose the one with minimal area
        areas[inside_gt_bbox_mask == 0] = INF
        areas[inside_regress_range == 0] = INF
        min_area, min_area_inds = areas.min(dim=1)

        labels = gt_labels[min_area_inds]
        labels[min_area == INF] = self.num_classes  # set as BG
        bbox_targets = bbox_targets[range(num_points), min_area_inds]

        return labels, bbox_targets

    def centerness_target(self, pos_bbox_targets: Tensor) -> Tensor:
        """Compute centerness targets.

        Args:
            pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape
                (num_pos, 4)

        Returns:
            Tensor: Centerness target.
        """
        # only calculate pos centerness targets, otherwise there may be nan
        left_right = pos_bbox_targets[:, [0, 2]]
        top_bottom = pos_bbox_targets[:, [1, 3]]
        if len(left_right) == 0:
            centerness_targets = left_right[..., 0]
        else:
            centerness_targets = (
                left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
                    top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
        return torch.sqrt(centerness_targets)