File size: 30,518 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# RTMDet: An Empirical Study of Designing Real-Time Object Detectors

> [RTMDet: An Empirical Study of Designing Real-Time Object Detectors](https://arxiv.org/abs/2212.07784)

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

<!-- [ALGORITHM] -->

## Abstract

In this paper, we aim to design an efficient real-time object detector that exceeds the YOLO series and is easily extensible for many object recognition tasks such as instance segmentation and rotated object detection. To obtain a more efficient model architecture, we explore an architecture that has compatible capacities in the backbone and neck, constructed by a basic building block that consists of large-kernel depth-wise convolutions. We further introduce soft labels when calculating matching costs in the dynamic label assignment to improve accuracy. Together with better training techniques, the resulting object detector, named RTMDet, achieves 52.8% AP on COCO with 300+ FPS on an NVIDIA 3090 GPU, outperforming the current mainstream industrial detectors. RTMDet achieves the best parameter-accuracy trade-off with tiny/small/medium/large/extra-large model sizes for various application scenarios, and obtains new state-of-the-art performance on real-time instance segmentation and rotated object detection. We hope the experimental results can provide new insights into designing versatile real-time object detectors for many object recognition tasks.

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208070055-7233a3d8-955f-486a-82da-b714b3c3bbd6.png"/>
</div>

## Results and Models

### Object Detection

|    Model    | size | box AP | Params(M) | FLOPS(G) | TRT-FP16-Latency(ms)<br>RTX3090 | TRT-FP16-Latency(ms)<br>T4 |                   Config                   |                                                                                                                                                Download                                                                                                                                                |
| :---------: | :--: | :----: | :-------: | :------: | :-----------------------------: | :------------------------: | :----------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| RTMDet-tiny | 640  |  41.1  |    4.8    |   8.1    |              0.98               |            2.34            | [config](./rtmdet_tiny_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_tiny_8xb32-300e_coco/rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_tiny_8xb32-300e_coco/rtmdet_tiny_8xb32-300e_coco_20220902_112414.log.json) |
|  RTMDet-s   | 640  |  44.6  |   8.89    |   14.8   |              1.22               |            2.96            |  [config](./rtmdet_s_8xb32-300e_coco.py)   |       [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_s_8xb32-300e_coco/rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_s_8xb32-300e_coco/rtmdet_s_8xb32-300e_coco_20220905_161602.log.json)       |
|  RTMDet-m   | 640  |  49.4  |   24.71   |  39.27   |              1.62               |            6.41            |  [config](./rtmdet_m_8xb32-300e_coco.py)   |       [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_m_8xb32-300e_coco/rtmdet_m_8xb32-300e_coco_20220719_112220-229f527c.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_m_8xb32-300e_coco/rtmdet_m_8xb32-300e_coco_20220719_112220.log.json)       |
|  RTMDet-l   | 640  |  51.5  |   52.3    |  80.23   |              2.44               |           10.32            |  [config](./rtmdet_l_8xb32-300e_coco.py)   |       [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_l_8xb32-300e_coco/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_l_8xb32-300e_coco/rtmdet_l_8xb32-300e_coco_20220719_112030.log.json)       |
|  RTMDet-x   | 640  |  52.8  |   94.86   |  141.67  |              3.10               |           18.80            |  [config](./rtmdet_x_8xb32-300e_coco.py)   |       [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_x_8xb32-300e_coco/rtmdet_x_8xb32-300e_coco_20220715_230555-cc79b9ae.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_x_8xb32-300e_coco/rtmdet_x_8xb32-300e_coco_20220715_230555.log.json)       |

**Note**:

1. We implement a fast training version of RTMDet in [MMYOLO](https://github.com/open-mmlab/mmyolo). Its training speed is **2.6 times faster** and memory requirement is lower! Try it [here](https://github.com/open-mmlab/mmyolo/tree/main/configs/rtmdet)!
2. The inference speed of RTMDet is measured with TensorRT 8.4.3, cuDNN 8.2.0, FP16, batch size=1, and without NMS.
3. For a fair comparison, the config of bbox postprocessing is changed to be consistent with YOLOv5/6/7 after [PR#9494](https://github.com/open-mmlab/mmdetection/pull/9494), bringing about 0.1~0.3% AP improvement.

### Instance Segmentation

RTMDet-Ins is the state-of-the-art real-time instance segmentation on coco dataset:

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)

|      Model      | size | box AP | mask AP | Params(M) | FLOPS(G) | TRT-FP16-Latency(ms) |                     Config                     |                                                                                                                                                        Download                                                                                                                                                        |
| :-------------: | :--: | :----: | :-----: | :-------: | :------: | :------------------: | :--------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| RTMDet-Ins-tiny | 640  |  40.5  |  35.4   |    5.6    |   11.8   |         1.70         | [config](./rtmdet-ins_tiny_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_tiny_8xb32-300e_coco/rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727-ec670f7e.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_tiny_8xb32-300e_coco/rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727.log.json) |
|  RTMDet-Ins-s   | 640  |  44.0  |  38.7   |   10.18   |   21.5   |         1.93         |  [config](./rtmdet-ins_s_8xb32-300e_coco.py)   |       [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_s_8xb32-300e_coco/rtmdet-ins_s_8xb32-300e_coco_20221121_212604-fdc5d7ec.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_s_8xb32-300e_coco/rtmdet-ins_s_8xb32-300e_coco_20221121_212604.log.json)       |
|  RTMDet-Ins-m   | 640  |  48.8  |  42.1   |   27.58   |  54.13   |         2.69         |  [config](./rtmdet-ins_m_8xb32-300e_coco.py)   |       [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_m_8xb32-300e_coco/rtmdet-ins_m_8xb32-300e_coco_20221123_001039-6eba602e.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_m_8xb32-300e_coco/rtmdet-ins_m_8xb32-300e_coco_20221123_001039.log.json)       |
|  RTMDet-Ins-l   | 640  |  51.2  |  43.7   |   57.37   |  106.56  |         3.68         |  [config](./rtmdet-ins_l_8xb32-300e_coco.py)   |       [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_l_8xb32-300e_coco/rtmdet-ins_l_8xb32-300e_coco_20221124_103237-78d1d652.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_l_8xb32-300e_coco/rtmdet-ins_l_8xb32-300e_coco_20221124_103237.log.json)       |
|  RTMDet-Ins-x   | 640  |  52.4  |  44.6   |   102.7   |  182.7   |         5.31         |  [config](./rtmdet-ins_x_8xb16-300e_coco.py)   |       [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_x_8xb16-300e_coco/rtmdet-ins_x_8xb16-300e_coco_20221124_111313-33d4595b.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_x_8xb16-300e_coco/rtmdet-ins_x_8xb16-300e_coco_20221124_111313.log.json)       |

**Note**:

1. The inference speed of RTMDet-Ins is measured on an NVIDIA 3090 GPU with TensorRT 8.4.3, cuDNN 8.2.0, FP16, batch size=1. Top 100 masks are kept and the post process latency is included.

### Rotated Object Detection

RTMDet-R achieves state-of-the-art on various remote sensing datasets.

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/one-stage-anchor-free-oriented-object-1)](https://paperswithcode.com/sota/one-stage-anchor-free-oriented-object-1?p=rtmdet-an-empirical-study-of-designing-real)

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/one-stage-anchor-free-oriented-object-3)](https://paperswithcode.com/sota/one-stage-anchor-free-oriented-object-3?p=rtmdet-an-empirical-study-of-designing-real)

Models and configs of RTMDet-R are available in [MMRotate](https://github.com/open-mmlab/mmrotate/tree/1.x/configs/rotated_rtmdet).

|  Backbone   | pretrain |  Aug  | mmAP  | mAP50 | mAP75 | Params(M) | FLOPS(G) | TRT-FP16-Latency(ms) |                                                            Config                                                             |                                                                                                                                                                       Download                                                                                                                                                                       |
| :---------: | :------: | :---: | :---: | :---: | :---: | :-------: | :------: | :------------------: | :---------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| RTMDet-tiny |    IN    |  RR   | 47.37 | 75.36 | 50.64 |   4.88    |  20.45   |         4.40         |        [config](https://github.com/open-mmlab/mmrotate/edit/1.x/configs/rotated_rtmdet/rotated_rtmdet_tiny-3x-dota.py)        |                             [model](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_tiny-3x-dota/rotated_rtmdet_tiny-3x-dota-9d821076.pth) \| [log](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_tiny-3x-dota/rotated_rtmdet_tiny-3x-dota_20221201_120814.json)                             |
| RTMDet-tiny |    IN    | MS+RR | 53.59 | 79.82 | 58.87 |   4.88    |  20.45   |         4.40         |      [config](https://github.com/open-mmlab/mmrotate/edit/1.x/configs/rotated_rtmdet/rotated_rtmdet_tiny-3x-dota_ms.py)       |                       [model](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_tiny-3x-dota_ms/rotated_rtmdet_tiny-3x-dota_ms-f12286ff.pth) \| [log](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_tiny-3x-dota_ms/rotated_rtmdet_tiny-3x-dota_ms_20221113_201235.log)                        |
|  RTMDet-s   |    IN    |  RR   | 48.16 | 76.93 | 50.59 |   8.86    |  37.62   |         4.86         |         [config](https://github.com/open-mmlab/mmrotate/edit/1.x/configs/rotated_rtmdet/rotated_rtmdet_s-3x-dota.py)          |                                   [model](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_s-3x-dota/rotated_rtmdet_s-3x-dota-11f6ccf5.pth) \| [log](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_s-3x-dota/rotated_rtmdet_s-3x-dota_20221124_081442.json)                                   |
|  RTMDet-s   |    IN    | MS+RR | 54.43 | 79.98 | 60.07 |   8.86    |  37.62   |         4.86         |        [config](https://github.com/open-mmlab/mmrotate/edit/1.x/configs/rotated_rtmdet/rotated_rtmdet_s-3x-dota_ms.py)        |                             [model](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_s-3x-dota_ms/rotated_rtmdet_s-3x-dota_ms-20ead048.pth) \| [log](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_s-3x-dota_ms/rotated_rtmdet_s-3x-dota_ms_20221113_201055.json)                             |
|  RTMDet-m   |    IN    |  RR   | 50.56 | 78.24 | 54.47 |   24.67   |  99.76   |         7.82         |         [config](https://github.com/open-mmlab/mmrotate/edit/1.x/configs/rotated_rtmdet/rotated_rtmdet_m-3x-dota.py)          |                                   [model](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_m-3x-dota/rotated_rtmdet_m-3x-dota-beeadda6.pth) \| [log](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_m-3x-dota/rotated_rtmdet_m-3x-dota_20221122_011234.json)                                   |
|  RTMDet-m   |    IN    | MS+RR | 55.00 | 80.26 | 61.26 |   24.67   |  99.76   |         7.82         |        [config](https://github.com/open-mmlab/mmrotate/edit/1.x/configs/rotated_rtmdet/rotated_rtmdet_m-3x-dota_ms.py)        |                             [model](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_m-3x-dota_ms/rotated_rtmdet_m-3x-dota_ms-c71eb375.pth) \| [log](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_m-3x-dota_ms/rotated_rtmdet_m-3x-dota_ms_20221122_011234.json)                             |
|  RTMDet-l   |    IN    |  RR   | 51.01 | 78.85 | 55.21 |   52.27   |  204.21  |        10.82         |         [config](https://github.com/open-mmlab/mmrotate/edit/1.x/configs/rotated_rtmdet/rotated_rtmdet_l-3x-dota.py)          |                                   [model](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_l-3x-dota/rotated_rtmdet_l-3x-dota-23992372.pth) \| [log](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_l-3x-dota/rotated_rtmdet_l-3x-dota_20221122_011241.json)                                   |
|  RTMDet-l   |    IN    | MS+RR | 55.52 | 80.54 | 61.47 |   52.27   |  204.21  |        10.82         |        [config](https://github.com/open-mmlab/mmrotate/edit/1.x/configs/rotated_rtmdet/rotated_rtmdet_l-3x-dota_ms.py)        |                             [model](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_l-3x-dota_ms/rotated_rtmdet_l-3x-dota_ms-2738da34.pth) \| [log](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_l-3x-dota_ms/rotated_rtmdet_l-3x-dota_ms_20221122_011241.json)                             |
|  RTMDet-l   |   COCO   | MS+RR | 56.74 | 81.33 | 63.45 |   52.27   |  204.21  |        10.82         | [config](https://github.com/open-mmlab/mmrotate/edit/1.x/configs/rotated_rtmdet/rotated_rtmdet_l-coco_pretrain-3x-dota_ms.py) | [model](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_l-coco_pretrain-3x-dota_ms/rotated_rtmdet_l-coco_pretrain-3x-dota_ms-06d248a2.pth) \| [log](https://download.openmmlab.com/mmrotate/v1.0/rotated_rtmdet/rotated_rtmdet_l-coco_pretrain-3x-dota_ms/rotated_rtmdet_l-coco_pretrain-3x-dota_ms_20221113_202010.json) |

### Classification

We also provide the imagenet classification configs of the RTMDet backbone. Find more details in the [classification folder](./classification).

|    Model     | resolution | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) |                                                              Download                                                               |
| :----------: | :--------: | :-------: | :------: | :-------: | :-------: | :---------------------------------------------------------------------------------------------------------------------------------: |
| CSPNeXt-tiny |  224x224   |   2.73    |   0.34   |   69.44   |   89.45   |    [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e-3a2dd350.pth)     |
|  CSPNeXt-s   |  224x224   |   4.89    |   0.66   |   74.41   |   92.23   |      [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e-ea671761.pth)      |
|  CSPNeXt-m   |  224x224   |   13.05   |   1.93   |   79.27   |   94.79   | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-m_8xb256-rsb-a1-600e_in1k-ecb3bbd9.pth) |
|  CSPNeXt-l   |  224x224   |   27.16   |   4.19   |   81.30   |   95.62   | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-l_8xb256-rsb-a1-600e_in1k-6a760974.pth) |
|  CSPNeXt-x   |  224x224   |   48.85   |   7.76   |   82.10   |   95.69   | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-x_8xb256-rsb-a1-600e_in1k-b3f78edd.pth) |

## Citation

```latex
@misc{lyu2022rtmdet,
      title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
      author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
      year={2022},
      eprint={2212.07784},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

## Visualization

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>

## Deployment Tutorial

Here is a basic example of deploy RTMDet with [MMDeploy-1.x](https://github.com/open-mmlab/mmdeploy/tree/1.x).

### Step1. Install MMDeploy

Before starting the deployment, please make sure you install MMDetection-3.x and MMDeploy-1.x correctly.

- Install MMDetection-3.x, please refer to the [MMDetection-3.x installation guide](https://mmdetection.readthedocs.io/en/3.x/get_started.html).
- Install MMDeploy-1.x, please refer to the [MMDeploy-1.x installation guide](https://mmdeploy.readthedocs.io/en/1.x/get_started.html#installation).

If you want to deploy RTMDet with ONNXRuntime, TensorRT, or other inference engine,
please make sure you have installed the corresponding dependencies and MMDeploy precompiled packages.

### Step2. Convert Model

After the installation, you can enjoy the model deployment journey starting from converting PyTorch model to backend model by running MMDeploy's `tools/deploy.py`.

The detailed model conversion tutorial please refer to the [MMDeploy document](https://mmdeploy.readthedocs.io/en/1.x/02-how-to-run/convert_model.html).
Here we only give the example of converting RTMDet.

MMDeploy supports converting dynamic and static models. Dynamic models support different input shape, but the inference speed is slower than static models.
To achieve the best performance, we suggest converting RTMDet with static setting.

- If you only want to use ONNX, please use [`configs/mmdet/detection/detection_onnxruntime_static.py`](https://github.com/open-mmlab/mmdeploy/blob/1.x/configs/mmdet/detection/detection_onnxruntime_static.py) as the deployment config.
- If you want to use TensorRT, please use [`configs/mmdet/detection/detection_tensorrt_static-640x640.py`](https://github.com/open-mmlab/mmdeploy/blob/1.x/configs/mmdet/detection/detection_tensorrt_static-640x640.py).

If you want to customize the settings in the deployment config for your requirements, please refer to [MMDeploy config tutorial](https://mmdeploy.readthedocs.io/en/1.x/02-how-to-run/write_config.html).

After preparing the deployment config, you can run the `tools/deploy.py` script to convert your model.
Here we take converting RTMDet-s to TensorRT as an example:

```shell
# go to the mmdeploy folder
cd ${PATH_TO_MMDEPLOY}

# download RTMDet-s checkpoint
wget -P checkpoint https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_s_8xb32-300e_coco/rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth

# run the command to start model conversion
python tools/deploy.py \
  configs/mmdet/detection/detection_tensorrt_static-640x640.py \
  ${PATH_TO_MMDET}/configs/rtmdet/rtmdet_s_8xb32-300e_coco.py \
  checkpoint/rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth \
  demo/resources/det.jpg \
  --work-dir ./work_dirs/rtmdet \
  --device cuda:0 \
  --show
```

If the script runs successfully, you will see the following files:

```
|----work_dirs
     |----rtmdet
          |----end2end.onnx  # ONNX model
          |----end2end.engine  # TensorRT engine file
```

After this, you can check the inference results with MMDeploy Model Converter API:

```python
from mmdeploy.apis import inference_model

result = inference_model(
  model_cfg='${PATH_TO_MMDET}/configs/rtmdet/rtmdet_s_8xb32-300e_coco.py',
  deploy_cfg='${PATH_TO_MMDEPLOY}/configs/mmdet/detection/detection_tensorrt_static-640x640.py',
  backend_files=['work_dirs/rtmdet/end2end.engine'],
  img='demo/resources/det.jpg',
  device='cuda:0')
```

#### Advanced Setting

To convert the model with TRT-FP16, you can enable the fp16 mode in your deploy config:

```python
# in MMDeploy config
backend_config = dict(
    type='tensorrt',
    common_config=dict(
        fp16_mode=True  # enable fp16
    ))
```

To reduce the end to end inference speed with the inference engine, we suggest you to adjust the post-processing setting of the model.
We set a very low score threshold during training and testing to achieve better COCO mAP.
However, in actual usage scenarios, a relatively high score threshold (e.g. 0.3) is usually used.

You can adjust the score threshold and the number of detection boxes in your model config according to the actual usage to reduce the time-consuming of post-processing.

```python
# in MMDetection config
model = dict(
    test_cfg=dict(
        nms_pre=1000,  # keep top-k score bboxes before nms
        min_bbox_size=0,
        score_thr=0.3,  # score threshold to filter bboxes
        nms=dict(type='nms', iou_threshold=0.65),
        max_per_img=100)  # only keep top-100 as the final results.
)
```

### Step3. Inference with SDK

We provide both Python and C++ inference API with MMDeploy SDK.

To use SDK, you need to dump the required info during converting the model. Just add `--dump-info` to the model conversion command:

```shell
python tools/deploy.py \
  configs/mmdet/detection/detection_tensorrt_static-640x640.py \
  ${PATH_TO_MMDET}/configs/rtmdet/rtmdet_s_8xb32-300e_coco.py \
  checkpoint/rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth \
  demo/resources/det.jpg \
  --work-dir ./work_dirs/rtmdet-sdk \
  --device cuda:0 \
  --show \
  --dump-info  # dump sdk info
```

After running the command, it will dump 3 json files additionally for the SDK:

```
|----work_dirs
     |----rtmdet-sdk
          |----end2end.onnx  # ONNX model
          |----end2end.engine  # TensorRT engine file
          # json files for the SDK
          |----pipeline.json
          |----deploy.json
          |----detail.json
```

#### Python API

Here is a basic example of SDK Python API:

```python
from mmdeploy_python import Detector
import cv2

img = cv2.imread('demo/resources/det.jpg')

# create a detector
detector = Detector(model_path='work_dirs/rtmdet-sdk', device_name='cuda', device_id=0)
# run the inference
bboxes, labels, _ = detector(img)
# Filter the result according to threshold
indices = [i for i in range(len(bboxes))]
for index, bbox, label_id in zip(indices, bboxes, labels):
  [left, top, right, bottom], score = bbox[0:4].astype(int),  bbox[4]
  if score < 0.3:
      continue
  # draw bbox
  cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))

cv2.imwrite('output_detection.png', img)
```

#### C++ API

Here is a basic example of SDK C++ API:

```C++
#include <cstdlib>
#include <opencv2/opencv.hpp>
#include "mmdeploy/detector.hpp"

int main() {
  const char* device_name = "cuda";
  int device_id = 0;
  std::string model_path = "work_dirs/rtmdet-sdk";
  std::string image_path = "demo/resources/det.jpg";

  // 1. load model
  mmdeploy::Model model(model_path);
  // 2. create predictor
  mmdeploy::Detector detector(model, mmdeploy::Device{device_name, device_id});
  // 3. read image
  cv::Mat img = cv::imread(image_path);
  // 4. inference
  auto dets = detector.Apply(img);
  // 5. deal with the result. Here we choose to visualize it
  for (int i = 0; i < dets.size(); ++i) {
    const auto& box = dets[i].bbox;
    fprintf(stdout, "box %d, left=%.2f, top=%.2f, right=%.2f, bottom=%.2f, label=%d, score=%.4f\n",
            i, box.left, box.top, box.right, box.bottom, dets[i].label_id, dets[i].score);
    if (bboxes[i].score < 0.3) {
      continue;
    }
    cv::rectangle(img, cv::Point{(int)box.left, (int)box.top},
                  cv::Point{(int)box.right, (int)box.bottom}, cv::Scalar{0, 255, 0});
  }
  cv::imwrite("output_detection.png", img);
  return 0;
}
```

To build C++ example, please add MMDeploy package in your CMake project as following:

```cmake
find_package(MMDeploy REQUIRED)
target_link_libraries(${name} PRIVATE mmdeploy ${OpenCV_LIBS})
```

#### Other languages

- [C# API Examples](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo/csharp)
- [JAVA API Examples](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo/java)

### Deploy RTMDet Instance Segmentation Model

We support RTMDet-Ins ONNXRuntime and TensorRT deployment after [MMDeploy v1.0.0rc2](https://github.com/open-mmlab/mmdeploy/tree/v1.0.0rc2). And its deployment process is almost consistent with the detection model.

#### Step1. Install MMDeploy >= v1.0.0rc2

Please refer to the [MMDeploy-1.x installation guide](https://mmdeploy.readthedocs.io/en/1.x/get_started.html#installation) to install the latest version.
Please remember to replace the pre-built package with the latest version.
The v1.0.0rc2 package can be downloaded from [v1.0.0rc2 release page](https://github.com/open-mmlab/mmdeploy/releases/tag/v1.0.0rc2).

Step2. Convert Model

This step has no difference with the previous tutorial. The only thing you need to change is switching to the RTMDet-Ins deploy config:

- If you want to use ONNXRuntime, please use [`configs/mmdet/instance-seg/instance-seg_rtmdet-ins_onnxruntime_static-640x640.py`](https://github.com/open-mmlab/mmdeploy/blob/dev-1.x/configs/mmdet/instance-seg/instance-seg_rtmdet-ins_onnxruntime_static-640x640.py) as the deployment config.
- If you want to use TensorRT, please use [`configs/mmdet/instance-seg/instance-seg_rtmdet-ins_tensorrt_static-640x640.py`](https://github.com/open-mmlab/mmdeploy/blob/dev-1.x/configs/mmdet/instance-seg/instance-seg_rtmdet-ins_tensorrt_static-640x640.py).

Here we take converting RTMDet-Ins-s to TensorRT as an example:

```shell
# go to the mmdeploy folder
cd ${PATH_TO_MMDEPLOY}

# download RTMDet-s checkpoint
wget -P checkpoint https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet-ins_s_8xb32-300e_coco/rtmdet-ins_s_8xb32-300e_coco_20221121_212604-fdc5d7ec.pth

# run the command to start model conversion
python tools/deploy.py \
  configs/mmdet/instance-seg/instance-seg_rtmdet-ins_tensorrt_static-640x640.py \
  ${PATH_TO_MMDET}/configs/rtmdet/rtmdet-ins_s_8xb32-300e_coco.py \
  checkpoint/rtmdet-ins_s_8xb32-300e_coco/rtmdet-ins_s_8xb32-300e_coco_20221121_212604-fdc5d7ec.pth \
  demo/resources/det.jpg \
  --work-dir ./work_dirs/rtmdet-ins \
  --device cuda:0 \
  --show
```

If the script runs successfully, you will see the following files:

```
|----work_dirs
     |----rtmdet-ins
          |----end2end.onnx  # ONNX model
          |----end2end.engine  # TensorRT engine file
```

After this, you can check the inference results with MMDeploy Model Converter API:

```python
from mmdeploy.apis import inference_model

result = inference_model(
  model_cfg='${PATH_TO_MMDET}/configs/rtmdet/rtmdet-ins_s_8xb32-300e_coco.py',
  deploy_cfg='${PATH_TO_MMDEPLOY}/configs/mmdet/instance-seg/instance-seg_rtmdet-ins_tensorrt_static-640x640.py',
  backend_files=['work_dirs/rtmdet-ins/end2end.engine'],
  img='demo/resources/det.jpg',
  device='cuda:0')
```