File size: 7,092 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch
from mmengine.structures import InstanceData

from mmdet.registry import TASK_UTILS
from mmdet.structures.bbox import bbox_xyxy_to_cxcywh
from mmdet.utils import ConfigType
from .assign_result import AssignResult
from .base_assigner import BaseAssigner


@TASK_UTILS.register_module()
class UniformAssigner(BaseAssigner):
    """Uniform Matching between the priors and gt boxes, which can achieve
    balance in positive priors, and gt_bboxes_ignore was not considered for
    now.

    Args:
        pos_ignore_thr (float): the threshold to ignore positive priors
        neg_ignore_thr (float): the threshold to ignore negative priors
        match_times(int): Number of positive priors for each gt box.
           Defaults to 4.
        iou_calculator (:obj:`ConfigDict` or dict): Config dict for iou
            calculator. Defaults to ``dict(type='BboxOverlaps2D')``
    """

    def __init__(self,
                 pos_ignore_thr: float,
                 neg_ignore_thr: float,
                 match_times: int = 4,
                 iou_calculator: ConfigType = dict(type='BboxOverlaps2D')):
        self.match_times = match_times
        self.pos_ignore_thr = pos_ignore_thr
        self.neg_ignore_thr = neg_ignore_thr
        self.iou_calculator = TASK_UTILS.build(iou_calculator)

    def assign(
            self,
            pred_instances: InstanceData,
            gt_instances: InstanceData,
            gt_instances_ignore: Optional[InstanceData] = None
    ) -> AssignResult:
        """Assign gt to priors.

        The assignment is done in following steps

        1. assign -1 by default
        2. compute the L1 cost between boxes. Note that we use priors and
           predict boxes both
        3. compute the ignore indexes use gt_bboxes and predict boxes
        4. compute the ignore indexes of positive sample use priors and
           predict boxes


        Args:
            pred_instances (:obj:`InstaceData`): Instances of model
                predictions. It includes ``priors``, and the priors can
                be priors, points, or bboxes predicted by the model,
                shape(n, 4).
            gt_instances (:obj:`InstaceData`): Ground truth of instance
                annotations. It usually includes ``bboxes`` and ``labels``
                attributes.
            gt_instances_ignore (:obj:`InstaceData`, optional): Instances
                to be ignored during training. It includes ``bboxes``
                attribute data that is ignored during training and testing.
                Defaults to None.

        Returns:
            :obj:`AssignResult`: The assign result.
        """

        gt_bboxes = gt_instances.bboxes
        gt_labels = gt_instances.labels
        priors = pred_instances.priors
        bbox_pred = pred_instances.decoder_priors

        num_gts, num_bboxes = gt_bboxes.size(0), bbox_pred.size(0)

        # 1. assign -1 by default
        assigned_gt_inds = bbox_pred.new_full((num_bboxes, ),
                                              0,
                                              dtype=torch.long)
        assigned_labels = bbox_pred.new_full((num_bboxes, ),
                                             -1,
                                             dtype=torch.long)
        if num_gts == 0 or num_bboxes == 0:
            # No ground truth or boxes, return empty assignment
            if num_gts == 0:
                # No ground truth, assign all to background
                assigned_gt_inds[:] = 0
            assign_result = AssignResult(
                num_gts, assigned_gt_inds, None, labels=assigned_labels)
            assign_result.set_extra_property(
                'pos_idx', bbox_pred.new_empty(0, dtype=torch.bool))
            assign_result.set_extra_property('pos_predicted_boxes',
                                             bbox_pred.new_empty((0, 4)))
            assign_result.set_extra_property('target_boxes',
                                             bbox_pred.new_empty((0, 4)))
            return assign_result

        # 2. Compute the L1 cost between boxes
        # Note that we use priors and predict boxes both
        cost_bbox = torch.cdist(
            bbox_xyxy_to_cxcywh(bbox_pred),
            bbox_xyxy_to_cxcywh(gt_bboxes),
            p=1)
        cost_bbox_priors = torch.cdist(
            bbox_xyxy_to_cxcywh(priors), bbox_xyxy_to_cxcywh(gt_bboxes), p=1)

        # We found that topk function has different results in cpu and
        # cuda mode. In order to ensure consistency with the source code,
        # we also use cpu mode.
        # TODO: Check whether the performance of cpu and cuda are the same.
        C = cost_bbox.cpu()
        C1 = cost_bbox_priors.cpu()

        # self.match_times x n
        index = torch.topk(
            C,  # c=b,n,x c[i]=n,x
            k=self.match_times,
            dim=0,
            largest=False)[1]

        # self.match_times x n
        index1 = torch.topk(C1, k=self.match_times, dim=0, largest=False)[1]
        # (self.match_times*2) x n
        indexes = torch.cat((index, index1),
                            dim=1).reshape(-1).to(bbox_pred.device)

        pred_overlaps = self.iou_calculator(bbox_pred, gt_bboxes)
        anchor_overlaps = self.iou_calculator(priors, gt_bboxes)
        pred_max_overlaps, _ = pred_overlaps.max(dim=1)
        anchor_max_overlaps, _ = anchor_overlaps.max(dim=0)

        # 3. Compute the ignore indexes use gt_bboxes and predict boxes
        ignore_idx = pred_max_overlaps > self.neg_ignore_thr
        assigned_gt_inds[ignore_idx] = -1

        # 4. Compute the ignore indexes of positive sample use priors
        # and predict boxes
        pos_gt_index = torch.arange(
            0, C1.size(1),
            device=bbox_pred.device).repeat(self.match_times * 2)
        pos_ious = anchor_overlaps[indexes, pos_gt_index]
        pos_ignore_idx = pos_ious < self.pos_ignore_thr

        pos_gt_index_with_ignore = pos_gt_index + 1
        pos_gt_index_with_ignore[pos_ignore_idx] = -1
        assigned_gt_inds[indexes] = pos_gt_index_with_ignore

        if gt_labels is not None:
            assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
            pos_inds = torch.nonzero(
                assigned_gt_inds > 0, as_tuple=False).squeeze()
            if pos_inds.numel() > 0:
                assigned_labels[pos_inds] = gt_labels[
                    assigned_gt_inds[pos_inds] - 1]
        else:
            assigned_labels = None

        assign_result = AssignResult(
            num_gts,
            assigned_gt_inds,
            anchor_max_overlaps,
            labels=assigned_labels)
        assign_result.set_extra_property('pos_idx', ~pos_ignore_idx)
        assign_result.set_extra_property('pos_predicted_boxes',
                                         bbox_pred[indexes])
        assign_result.set_extra_property('target_boxes',
                                         gt_bboxes[pos_gt_index])
        return assign_result