File size: 6,966 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch
from mmengine.structures import InstanceData

from mmdet.registry import TASK_UTILS
from mmdet.utils import ConfigType
from .assign_result import AssignResult
from .base_assigner import BaseAssigner

INF = 100000000


@TASK_UTILS.register_module()
class TaskAlignedAssigner(BaseAssigner):
    """Task aligned assigner used in the paper:
    `TOOD: Task-aligned One-stage Object Detection.
    <https://arxiv.org/abs/2108.07755>`_.

    Assign a corresponding gt bbox or background to each predicted bbox.
    Each bbox will be assigned with `0` or a positive integer
    indicating the ground truth index.

    - 0: negative sample, no assigned gt
    - positive integer: positive sample, index (1-based) of assigned gt

    Args:
        topk (int): number of bbox selected in each level
        iou_calculator (:obj:`ConfigDict` or dict): Config dict for iou
            calculator. Defaults to ``dict(type='BboxOverlaps2D')``
    """

    def __init__(self,
                 topk: int,
                 iou_calculator: ConfigType = dict(type='BboxOverlaps2D')):
        assert topk >= 1
        self.topk = topk
        self.iou_calculator = TASK_UTILS.build(iou_calculator)

    def assign(self,
               pred_instances: InstanceData,
               gt_instances: InstanceData,
               gt_instances_ignore: Optional[InstanceData] = None,
               alpha: int = 1,
               beta: int = 6) -> AssignResult:
        """Assign gt to bboxes.

        The assignment is done in following steps

        1. compute alignment metric between all bbox (bbox of all pyramid
           levels) and gt
        2. select top-k bbox as candidates for each gt
        3. limit the positive sample's center in gt (because the anchor-free
           detector only can predict positive distance)


        Args:
            pred_instances (:obj:`InstaceData`): Instances of model
                predictions. It includes ``priors``, and the priors can
                be anchors, points, or bboxes predicted by the model,
                shape(n, 4).
            gt_instances (:obj:`InstaceData`): Ground truth of instance
                annotations. It usually includes ``bboxes`` and ``labels``
                attributes.
            gt_instances_ignore (:obj:`InstaceData`, optional): Instances
                to be ignored during training. It includes ``bboxes``
                attribute data that is ignored during training and testing.
                Defaults to None.
            alpha (int): Hyper-parameters related to alignment_metrics.
                Defaults to 1.
            beta (int): Hyper-parameters related to alignment_metrics.
                Defaults to 6.

        Returns:
            :obj:`TaskAlignedAssignResult`: The assign result.
        """
        priors = pred_instances.priors
        decode_bboxes = pred_instances.bboxes
        pred_scores = pred_instances.scores
        gt_bboxes = gt_instances.bboxes
        gt_labels = gt_instances.labels

        priors = priors[:, :4]
        num_gt, num_bboxes = gt_bboxes.size(0), priors.size(0)
        # compute alignment metric between all bbox and gt
        overlaps = self.iou_calculator(decode_bboxes, gt_bboxes).detach()
        bbox_scores = pred_scores[:, gt_labels].detach()
        # assign 0 by default
        assigned_gt_inds = priors.new_full((num_bboxes, ), 0, dtype=torch.long)
        assign_metrics = priors.new_zeros((num_bboxes, ))

        if num_gt == 0 or num_bboxes == 0:
            # No ground truth or boxes, return empty assignment
            max_overlaps = priors.new_zeros((num_bboxes, ))
            if num_gt == 0:
                # No gt boxes, assign everything to background
                assigned_gt_inds[:] = 0
            assigned_labels = priors.new_full((num_bboxes, ),
                                              -1,
                                              dtype=torch.long)
            assign_result = AssignResult(
                num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
            assign_result.assign_metrics = assign_metrics
            return assign_result

        # select top-k bboxes as candidates for each gt
        alignment_metrics = bbox_scores**alpha * overlaps**beta
        topk = min(self.topk, alignment_metrics.size(0))
        _, candidate_idxs = alignment_metrics.topk(topk, dim=0, largest=True)
        candidate_metrics = alignment_metrics[candidate_idxs,
                                              torch.arange(num_gt)]
        is_pos = candidate_metrics > 0

        # limit the positive sample's center in gt
        priors_cx = (priors[:, 0] + priors[:, 2]) / 2.0
        priors_cy = (priors[:, 1] + priors[:, 3]) / 2.0
        for gt_idx in range(num_gt):
            candidate_idxs[:, gt_idx] += gt_idx * num_bboxes
        ep_priors_cx = priors_cx.view(1, -1).expand(
            num_gt, num_bboxes).contiguous().view(-1)
        ep_priors_cy = priors_cy.view(1, -1).expand(
            num_gt, num_bboxes).contiguous().view(-1)
        candidate_idxs = candidate_idxs.view(-1)

        # calculate the left, top, right, bottom distance between positive
        # bbox center and gt side
        l_ = ep_priors_cx[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 0]
        t_ = ep_priors_cy[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 1]
        r_ = gt_bboxes[:, 2] - ep_priors_cx[candidate_idxs].view(-1, num_gt)
        b_ = gt_bboxes[:, 3] - ep_priors_cy[candidate_idxs].view(-1, num_gt)
        is_in_gts = torch.stack([l_, t_, r_, b_], dim=1).min(dim=1)[0] > 0.01
        is_pos = is_pos & is_in_gts

        # if an anchor box is assigned to multiple gts,
        # the one with the highest iou will be selected.
        overlaps_inf = torch.full_like(overlaps,
                                       -INF).t().contiguous().view(-1)
        index = candidate_idxs.view(-1)[is_pos.view(-1)]
        overlaps_inf[index] = overlaps.t().contiguous().view(-1)[index]
        overlaps_inf = overlaps_inf.view(num_gt, -1).t()

        max_overlaps, argmax_overlaps = overlaps_inf.max(dim=1)
        assigned_gt_inds[
            max_overlaps != -INF] = argmax_overlaps[max_overlaps != -INF] + 1
        assign_metrics[max_overlaps != -INF] = alignment_metrics[
            max_overlaps != -INF, argmax_overlaps[max_overlaps != -INF]]

        assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
        pos_inds = torch.nonzero(
            assigned_gt_inds > 0, as_tuple=False).squeeze()
        if pos_inds.numel() > 0:
            assigned_labels[pos_inds] = gt_labels[assigned_gt_inds[pos_inds] -
                                                  1]
        assign_result = AssignResult(
            num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
        assign_result.assign_metrics = assign_metrics
        return assign_result