File size: 17,440 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple

import torch
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import DetDataSample, SampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import ConfigType, InstanceList
from ..task_modules.samplers import SamplingResult
from ..utils import empty_instances, unpack_gt_instances
from .base_roi_head import BaseRoIHead


@MODELS.register_module()
class StandardRoIHead(BaseRoIHead):
    """Simplest base roi head including one bbox head and one mask head."""

    def init_assigner_sampler(self) -> None:
        """Initialize assigner and sampler."""
        self.bbox_assigner = None
        self.bbox_sampler = None
        if self.train_cfg:
            self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
            self.bbox_sampler = TASK_UTILS.build(
                self.train_cfg.sampler, default_args=dict(context=self))

    def init_bbox_head(self, bbox_roi_extractor: ConfigType,
                       bbox_head: ConfigType) -> None:
        """Initialize box head and box roi extractor.

        Args:
            bbox_roi_extractor (dict or ConfigDict): Config of box
                roi extractor.
            bbox_head (dict or ConfigDict): Config of box in box head.
        """
        self.bbox_roi_extractor = MODELS.build(bbox_roi_extractor)
        self.bbox_head = MODELS.build(bbox_head)

    def init_mask_head(self, mask_roi_extractor: ConfigType,
                       mask_head: ConfigType) -> None:
        """Initialize mask head and mask roi extractor.

        Args:
            mask_roi_extractor (dict or ConfigDict): Config of mask roi
                extractor.
            mask_head (dict or ConfigDict): Config of mask in mask head.
        """
        if mask_roi_extractor is not None:
            self.mask_roi_extractor = MODELS.build(mask_roi_extractor)
            self.share_roi_extractor = False
        else:
            self.share_roi_extractor = True
            self.mask_roi_extractor = self.bbox_roi_extractor
        self.mask_head = MODELS.build(mask_head)

    # TODO: Need to refactor later
    def forward(self,
                x: Tuple[Tensor],
                rpn_results_list: InstanceList,
                batch_data_samples: SampleList = None) -> tuple:
        """Network forward process. Usually includes backbone, neck and head
        forward without any post-processing.

        Args:
            x (List[Tensor]): Multi-level features that may have different
                resolutions.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
            the meta information of each image and corresponding
            annotations.

        Returns
            tuple: A tuple of features from ``bbox_head`` and ``mask_head``
            forward.
        """
        results = ()
        proposals = [rpn_results.bboxes for rpn_results in rpn_results_list]
        rois = bbox2roi(proposals)
        # bbox head
        if self.with_bbox:
            bbox_results = self._bbox_forward(x, rois)
            results = results + (bbox_results['cls_score'],
                                 bbox_results['bbox_pred'])
        # mask head
        if self.with_mask:
            mask_rois = rois[:100]
            mask_results = self._mask_forward(x, mask_rois)
            results = results + (mask_results['mask_preds'], )
        return results

    def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
             batch_data_samples: List[DetDataSample]) -> dict:
        """Perform forward propagation and loss calculation of the detection
        roi on the features of the upstream network.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns:
            dict[str, Tensor]: A dictionary of loss components
        """
        assert len(rpn_results_list) == len(batch_data_samples)
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, batch_gt_instances_ignore, _ = outputs

        # assign gts and sample proposals
        num_imgs = len(batch_data_samples)
        sampling_results = []
        for i in range(num_imgs):
            # rename rpn_results.bboxes to rpn_results.priors
            rpn_results = rpn_results_list[i]
            rpn_results.priors = rpn_results.pop('bboxes')

            assign_result = self.bbox_assigner.assign(
                rpn_results, batch_gt_instances[i],
                batch_gt_instances_ignore[i])
            sampling_result = self.bbox_sampler.sample(
                assign_result,
                rpn_results,
                batch_gt_instances[i],
                feats=[lvl_feat[i][None] for lvl_feat in x])
            sampling_results.append(sampling_result)

        losses = dict()
        # bbox head loss
        if self.with_bbox:
            bbox_results = self.bbox_loss(x, sampling_results)
            losses.update(bbox_results['loss_bbox'])

        # mask head forward and loss
        if self.with_mask:
            mask_results = self.mask_loss(x, sampling_results,
                                          bbox_results['bbox_feats'],
                                          batch_gt_instances)
            losses.update(mask_results['loss_mask'])

        return losses

    def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict:
        """Box head forward function used in both training and testing.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.

        Returns:
             dict[str, Tensor]: Usually returns a dictionary with keys:

                - `cls_score` (Tensor): Classification scores.
                - `bbox_pred` (Tensor): Box energies / deltas.
                - `bbox_feats` (Tensor): Extract bbox RoI features.
        """
        # TODO: a more flexible way to decide which feature maps to use
        bbox_feats = self.bbox_roi_extractor(
            x[:self.bbox_roi_extractor.num_inputs], rois)
        if self.with_shared_head:
            bbox_feats = self.shared_head(bbox_feats)
        cls_score, bbox_pred = self.bbox_head(bbox_feats)

        bbox_results = dict(
            cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats)
        return bbox_results

    def bbox_loss(self, x: Tuple[Tensor],
                  sampling_results: List[SamplingResult]) -> dict:
        """Perform forward propagation and loss calculation of the bbox head on
        the features of the upstream network.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            sampling_results (list["obj:`SamplingResult`]): Sampling results.

        Returns:
            dict[str, Tensor]: Usually returns a dictionary with keys:

                - `cls_score` (Tensor): Classification scores.
                - `bbox_pred` (Tensor): Box energies / deltas.
                - `bbox_feats` (Tensor): Extract bbox RoI features.
                - `loss_bbox` (dict): A dictionary of bbox loss components.
        """
        rois = bbox2roi([res.priors for res in sampling_results])
        bbox_results = self._bbox_forward(x, rois)

        bbox_loss_and_target = self.bbox_head.loss_and_target(
            cls_score=bbox_results['cls_score'],
            bbox_pred=bbox_results['bbox_pred'],
            rois=rois,
            sampling_results=sampling_results,
            rcnn_train_cfg=self.train_cfg)

        bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox'])
        return bbox_results

    def mask_loss(self, x: Tuple[Tensor],
                  sampling_results: List[SamplingResult], bbox_feats: Tensor,
                  batch_gt_instances: InstanceList) -> dict:
        """Perform forward propagation and loss calculation of the mask head on
        the features of the upstream network.

        Args:
            x (tuple[Tensor]): Tuple of multi-level img features.
            sampling_results (list["obj:`SamplingResult`]): Sampling results.
            bbox_feats (Tensor): Extract bbox RoI features.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``labels``, and
                ``masks`` attributes.

        Returns:
            dict: Usually returns a dictionary with keys:

                - `mask_preds` (Tensor): Mask prediction.
                - `mask_feats` (Tensor): Extract mask RoI features.
                - `mask_targets` (Tensor): Mask target of each positive\
                    proposals in the image.
                - `loss_mask` (dict): A dictionary of mask loss components.
        """
        if not self.share_roi_extractor:
            pos_rois = bbox2roi([res.pos_priors for res in sampling_results])
            mask_results = self._mask_forward(x, pos_rois)
        else:
            pos_inds = []
            device = bbox_feats.device
            for res in sampling_results:
                pos_inds.append(
                    torch.ones(
                        res.pos_priors.shape[0],
                        device=device,
                        dtype=torch.uint8))
                pos_inds.append(
                    torch.zeros(
                        res.neg_priors.shape[0],
                        device=device,
                        dtype=torch.uint8))
            pos_inds = torch.cat(pos_inds)

            mask_results = self._mask_forward(
                x, pos_inds=pos_inds, bbox_feats=bbox_feats)

        mask_loss_and_target = self.mask_head.loss_and_target(
            mask_preds=mask_results['mask_preds'],
            sampling_results=sampling_results,
            batch_gt_instances=batch_gt_instances,
            rcnn_train_cfg=self.train_cfg)

        mask_results.update(loss_mask=mask_loss_and_target['loss_mask'])
        return mask_results

    def _mask_forward(self,
                      x: Tuple[Tensor],
                      rois: Tensor = None,
                      pos_inds: Optional[Tensor] = None,
                      bbox_feats: Optional[Tensor] = None) -> dict:
        """Mask head forward function used in both training and testing.

        Args:
            x (tuple[Tensor]): Tuple of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.
            pos_inds (Tensor, optional): Indices of positive samples.
                Defaults to None.
            bbox_feats (Tensor): Extract bbox RoI features. Defaults to None.

        Returns:
            dict[str, Tensor]: Usually returns a dictionary with keys:

                - `mask_preds` (Tensor): Mask prediction.
                - `mask_feats` (Tensor): Extract mask RoI features.
        """
        assert ((rois is not None) ^
                (pos_inds is not None and bbox_feats is not None))
        if rois is not None:
            mask_feats = self.mask_roi_extractor(
                x[:self.mask_roi_extractor.num_inputs], rois)
            if self.with_shared_head:
                mask_feats = self.shared_head(mask_feats)
        else:
            assert bbox_feats is not None
            mask_feats = bbox_feats[pos_inds]

        mask_preds = self.mask_head(mask_feats)
        mask_results = dict(mask_preds=mask_preds, mask_feats=mask_feats)
        return mask_results

    def predict_bbox(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     rpn_results_list: InstanceList,
                     rcnn_test_cfg: ConfigType,
                     rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the bbox head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            batch_img_metas (list[dict]): List of image information.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        proposals = [res.bboxes for res in rpn_results_list]
        rois = bbox2roi(proposals)

        if rois.shape[0] == 0:
            return empty_instances(
                batch_img_metas,
                rois.device,
                task_type='bbox',
                box_type=self.bbox_head.predict_box_type,
                num_classes=self.bbox_head.num_classes,
                score_per_cls=rcnn_test_cfg is None)

        bbox_results = self._bbox_forward(x, rois)

        # split batch bbox prediction back to each image
        cls_scores = bbox_results['cls_score']
        bbox_preds = bbox_results['bbox_pred']
        num_proposals_per_img = tuple(len(p) for p in proposals)
        rois = rois.split(num_proposals_per_img, 0)
        cls_scores = cls_scores.split(num_proposals_per_img, 0)

        # some detector with_reg is False, bbox_preds will be None
        if bbox_preds is not None:
            # TODO move this to a sabl_roi_head
            # the bbox prediction of some detectors like SABL is not Tensor
            if isinstance(bbox_preds, torch.Tensor):
                bbox_preds = bbox_preds.split(num_proposals_per_img, 0)
            else:
                bbox_preds = self.bbox_head.bbox_pred_split(
                    bbox_preds, num_proposals_per_img)
        else:
            bbox_preds = (None, ) * len(proposals)

        result_list = self.bbox_head.predict_by_feat(
            rois=rois,
            cls_scores=cls_scores,
            bbox_preds=bbox_preds,
            batch_img_metas=batch_img_metas,
            rcnn_test_cfg=rcnn_test_cfg,
            rescale=rescale)
        return result_list

    def predict_mask(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     results_list: InstanceList,
                     rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the mask head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            batch_img_metas (list[dict]): List of image information.
            results_list (list[:obj:`InstanceData`]): Detection results of
                each image.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, H, W).
        """
        # don't need to consider aug_test.
        bboxes = [res.bboxes for res in results_list]
        mask_rois = bbox2roi(bboxes)
        if mask_rois.shape[0] == 0:
            results_list = empty_instances(
                batch_img_metas,
                mask_rois.device,
                task_type='mask',
                instance_results=results_list,
                mask_thr_binary=self.test_cfg.mask_thr_binary)
            return results_list

        mask_results = self._mask_forward(x, mask_rois)
        mask_preds = mask_results['mask_preds']
        # split batch mask prediction back to each image
        num_mask_rois_per_img = [len(res) for res in results_list]
        mask_preds = mask_preds.split(num_mask_rois_per_img, 0)

        # TODO: Handle the case where rescale is false
        results_list = self.mask_head.predict_by_feat(
            mask_preds=mask_preds,
            results_list=results_list,
            batch_img_metas=batch_img_metas,
            rcnn_test_cfg=self.test_cfg,
            rescale=rescale)
        return results_list