Spaces:
Runtime error
Runtime error
File size: 6,523 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmengine.utils import digit_version, is_tuple_of
from torch import Tensor
from mmdet.utils import MultiConfig, OptConfigType, OptMultiConfig
class SELayer(BaseModule):
"""Squeeze-and-Excitation Module.
Args:
channels (int): The input (and output) channels of the SE layer.
ratio (int): Squeeze ratio in SELayer, the intermediate channel will be
``int(channels/ratio)``. Defaults to 16.
conv_cfg (None or dict): Config dict for convolution layer.
Defaults to None, which means using conv2d.
act_cfg (dict or Sequence[dict]): Config dict for activation layer.
If act_cfg is a dict, two activation layers will be configurated
by this dict. If act_cfg is a sequence of dicts, the first
activation layer will be configurated by the first dict and the
second activation layer will be configurated by the second dict.
Defaults to (dict(type='ReLU'), dict(type='Sigmoid'))
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None
"""
def __init__(self,
channels: int,
ratio: int = 16,
conv_cfg: OptConfigType = None,
act_cfg: MultiConfig = (dict(type='ReLU'),
dict(type='Sigmoid')),
init_cfg: OptMultiConfig = None) -> None:
super().__init__(init_cfg=init_cfg)
if isinstance(act_cfg, dict):
act_cfg = (act_cfg, act_cfg)
assert len(act_cfg) == 2
assert is_tuple_of(act_cfg, dict)
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.conv1 = ConvModule(
in_channels=channels,
out_channels=int(channels / ratio),
kernel_size=1,
stride=1,
conv_cfg=conv_cfg,
act_cfg=act_cfg[0])
self.conv2 = ConvModule(
in_channels=int(channels / ratio),
out_channels=channels,
kernel_size=1,
stride=1,
conv_cfg=conv_cfg,
act_cfg=act_cfg[1])
def forward(self, x: Tensor) -> Tensor:
"""Forward function for SELayer."""
out = self.global_avgpool(x)
out = self.conv1(out)
out = self.conv2(out)
return x * out
class DyReLU(BaseModule):
"""Dynamic ReLU (DyReLU) module.
See `Dynamic ReLU <https://arxiv.org/abs/2003.10027>`_ for details.
Current implementation is specialized for task-aware attention in DyHead.
HSigmoid arguments in default act_cfg follow DyHead official code.
https://github.com/microsoft/DynamicHead/blob/master/dyhead/dyrelu.py
Args:
channels (int): The input (and output) channels of DyReLU module.
ratio (int): Squeeze ratio in Squeeze-and-Excitation-like module,
the intermediate channel will be ``int(channels/ratio)``.
Defaults to 4.
conv_cfg (None or dict): Config dict for convolution layer.
Defaults to None, which means using conv2d.
act_cfg (dict or Sequence[dict]): Config dict for activation layer.
If act_cfg is a dict, two activation layers will be configurated
by this dict. If act_cfg is a sequence of dicts, the first
activation layer will be configurated by the first dict and the
second activation layer will be configurated by the second dict.
Defaults to (dict(type='ReLU'), dict(type='HSigmoid', bias=3.0,
divisor=6.0))
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None
"""
def __init__(self,
channels: int,
ratio: int = 4,
conv_cfg: OptConfigType = None,
act_cfg: MultiConfig = (dict(type='ReLU'),
dict(
type='HSigmoid',
bias=3.0,
divisor=6.0)),
init_cfg: OptMultiConfig = None) -> None:
super().__init__(init_cfg=init_cfg)
if isinstance(act_cfg, dict):
act_cfg = (act_cfg, act_cfg)
assert len(act_cfg) == 2
assert is_tuple_of(act_cfg, dict)
self.channels = channels
self.expansion = 4 # for a1, b1, a2, b2
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.conv1 = ConvModule(
in_channels=channels,
out_channels=int(channels / ratio),
kernel_size=1,
stride=1,
conv_cfg=conv_cfg,
act_cfg=act_cfg[0])
self.conv2 = ConvModule(
in_channels=int(channels / ratio),
out_channels=channels * self.expansion,
kernel_size=1,
stride=1,
conv_cfg=conv_cfg,
act_cfg=act_cfg[1])
def forward(self, x: Tensor) -> Tensor:
"""Forward function."""
coeffs = self.global_avgpool(x)
coeffs = self.conv1(coeffs)
coeffs = self.conv2(coeffs) - 0.5 # value range: [-0.5, 0.5]
a1, b1, a2, b2 = torch.split(coeffs, self.channels, dim=1)
a1 = a1 * 2.0 + 1.0 # [-1.0, 1.0] + 1.0
a2 = a2 * 2.0 # [-1.0, 1.0]
out = torch.max(x * a1 + b1, x * a2 + b2)
return out
class ChannelAttention(BaseModule):
"""Channel attention Module.
Args:
channels (int): The input (and output) channels of the attention layer.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None
"""
def __init__(self, channels: int, init_cfg: OptMultiConfig = None) -> None:
super().__init__(init_cfg=init_cfg)
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
if digit_version(torch.__version__) < (1, 7, 0):
self.act = nn.Hardsigmoid()
else:
self.act = nn.Hardsigmoid(inplace=True)
def forward(self, x: Tensor) -> Tensor:
"""Forward function for ChannelAttention."""
with torch.cuda.amp.autocast(enabled=False):
out = self.global_avgpool(x)
out = self.fc(out)
out = self.act(out)
return x * out
|