File size: 40,982 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Sequence, Tuple

import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.ops import DeformConv2d
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptInstanceList
from ..task_modules.prior_generators import MlvlPointGenerator
from ..task_modules.samplers import PseudoSampler
from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply,
                     unmap)
from .anchor_free_head import AnchorFreeHead


@MODELS.register_module()
class RepPointsHead(AnchorFreeHead):
    """RepPoint head.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        point_feat_channels (int): Number of channels of points features.
        num_points (int): Number of points.
        gradient_mul (float): The multiplier to gradients from
            points refinement and recognition.
        point_strides (Sequence[int]): points strides.
        point_base_scale (int): bbox scale for assigning labels.
        loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
        loss_bbox_init (:obj:`ConfigDict` or dict): Config of initial points
            loss.
        loss_bbox_refine (:obj:`ConfigDict` or dict): Config of points loss in
            refinement.
        use_grid_points (bool): If we use bounding box representation, the
        reppoints is represented as grid points on the bounding box.
        center_init (bool): Whether to use center point assignment.
        transform_method (str): The methods to transform RepPoints to bbox.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict]): Initialization config dict.
    """  # noqa: W605

    def __init__(self,
                 num_classes: int,
                 in_channels: int,
                 point_feat_channels: int = 256,
                 num_points: int = 9,
                 gradient_mul: float = 0.1,
                 point_strides: Sequence[int] = [8, 16, 32, 64, 128],
                 point_base_scale: int = 4,
                 loss_cls: ConfigType = dict(
                     type='FocalLoss',
                     use_sigmoid=True,
                     gamma=2.0,
                     alpha=0.25,
                     loss_weight=1.0),
                 loss_bbox_init: ConfigType = dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.5),
                 loss_bbox_refine: ConfigType = dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
                 use_grid_points: bool = False,
                 center_init: bool = True,
                 transform_method: str = 'moment',
                 moment_mul: float = 0.01,
                 init_cfg: MultiConfig = dict(
                     type='Normal',
                     layer='Conv2d',
                     std=0.01,
                     override=dict(
                         type='Normal',
                         name='reppoints_cls_out',
                         std=0.01,
                         bias_prob=0.01)),
                 **kwargs) -> None:
        self.num_points = num_points
        self.point_feat_channels = point_feat_channels
        self.use_grid_points = use_grid_points
        self.center_init = center_init

        # we use deform conv to extract points features
        self.dcn_kernel = int(np.sqrt(num_points))
        self.dcn_pad = int((self.dcn_kernel - 1) / 2)
        assert self.dcn_kernel * self.dcn_kernel == num_points, \
            'The points number should be a square number.'
        assert self.dcn_kernel % 2 == 1, \
            'The points number should be an odd square number.'
        dcn_base = np.arange(-self.dcn_pad,
                             self.dcn_pad + 1).astype(np.float64)
        dcn_base_y = np.repeat(dcn_base, self.dcn_kernel)
        dcn_base_x = np.tile(dcn_base, self.dcn_kernel)
        dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape(
            (-1))
        self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1)

        super().__init__(
            num_classes=num_classes,
            in_channels=in_channels,
            loss_cls=loss_cls,
            init_cfg=init_cfg,
            **kwargs)

        self.gradient_mul = gradient_mul
        self.point_base_scale = point_base_scale
        self.point_strides = point_strides
        self.prior_generator = MlvlPointGenerator(
            self.point_strides, offset=0.)

        if self.train_cfg:
            self.init_assigner = TASK_UTILS.build(
                self.train_cfg['init']['assigner'])
            self.refine_assigner = TASK_UTILS.build(
                self.train_cfg['refine']['assigner'])

            if self.train_cfg.get('sampler', None) is not None:
                self.sampler = TASK_UTILS.build(
                    self.train_cfg['sampler'], default_args=dict(context=self))
            else:
                self.sampler = PseudoSampler(context=self)

        self.transform_method = transform_method
        if self.transform_method == 'moment':
            self.moment_transfer = nn.Parameter(
                data=torch.zeros(2), requires_grad=True)
            self.moment_mul = moment_mul

        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
        if self.use_sigmoid_cls:
            self.cls_out_channels = self.num_classes
        else:
            self.cls_out_channels = self.num_classes + 1
        self.loss_bbox_init = MODELS.build(loss_bbox_init)
        self.loss_bbox_refine = MODELS.build(loss_bbox_refine)

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
        self.reppoints_cls_conv = DeformConv2d(self.feat_channels,
                                               self.point_feat_channels,
                                               self.dcn_kernel, 1,
                                               self.dcn_pad)
        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
                                           self.cls_out_channels, 1, 1, 0)
        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
                                                 self.point_feat_channels, 3,
                                                 1, 1)
        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
                                                pts_out_dim, 1, 1, 0)
        self.reppoints_pts_refine_conv = DeformConv2d(self.feat_channels,
                                                      self.point_feat_channels,
                                                      self.dcn_kernel, 1,
                                                      self.dcn_pad)
        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
                                                  pts_out_dim, 1, 1, 0)

    def points2bbox(self, pts: Tensor, y_first: bool = True) -> Tensor:
        """Converting the points set into bounding box.

        Args:
            pts (Tensor): the input points sets (fields), each points
                set (fields) is represented as 2n scalar.
            y_first (bool): if y_first=True, the point set is
                represented as [y1, x1, y2, x2 ... yn, xn], otherwise
                the point set is represented as
                [x1, y1, x2, y2 ... xn, yn]. Defaults to True.

        Returns:
            Tensor: each points set is converting to a bbox [x1, y1, x2, y2].
        """
        pts_reshape = pts.view(pts.shape[0], -1, 2, *pts.shape[2:])
        pts_y = pts_reshape[:, :, 0, ...] if y_first else pts_reshape[:, :, 1,
                                                                      ...]
        pts_x = pts_reshape[:, :, 1, ...] if y_first else pts_reshape[:, :, 0,
                                                                      ...]
        if self.transform_method == 'minmax':
            bbox_left = pts_x.min(dim=1, keepdim=True)[0]
            bbox_right = pts_x.max(dim=1, keepdim=True)[0]
            bbox_up = pts_y.min(dim=1, keepdim=True)[0]
            bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
            bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
                             dim=1)
        elif self.transform_method == 'partial_minmax':
            pts_y = pts_y[:, :4, ...]
            pts_x = pts_x[:, :4, ...]
            bbox_left = pts_x.min(dim=1, keepdim=True)[0]
            bbox_right = pts_x.max(dim=1, keepdim=True)[0]
            bbox_up = pts_y.min(dim=1, keepdim=True)[0]
            bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
            bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
                             dim=1)
        elif self.transform_method == 'moment':
            pts_y_mean = pts_y.mean(dim=1, keepdim=True)
            pts_x_mean = pts_x.mean(dim=1, keepdim=True)
            pts_y_std = torch.std(pts_y - pts_y_mean, dim=1, keepdim=True)
            pts_x_std = torch.std(pts_x - pts_x_mean, dim=1, keepdim=True)
            moment_transfer = (self.moment_transfer * self.moment_mul) + (
                self.moment_transfer.detach() * (1 - self.moment_mul))
            moment_width_transfer = moment_transfer[0]
            moment_height_transfer = moment_transfer[1]
            half_width = pts_x_std * torch.exp(moment_width_transfer)
            half_height = pts_y_std * torch.exp(moment_height_transfer)
            bbox = torch.cat([
                pts_x_mean - half_width, pts_y_mean - half_height,
                pts_x_mean + half_width, pts_y_mean + half_height
            ],
                             dim=1)
        else:
            raise NotImplementedError
        return bbox

    def gen_grid_from_reg(self, reg: Tensor,
                          previous_boxes: Tensor) -> Tuple[Tensor]:
        """Base on the previous bboxes and regression values, we compute the
        regressed bboxes and generate the grids on the bboxes.

        Args:
            reg (Tensor): the regression value to previous bboxes.
            previous_boxes (Tensor): previous bboxes.

        Returns:
            Tuple[Tensor]: generate grids on the regressed bboxes.
        """
        b, _, h, w = reg.shape
        bxy = (previous_boxes[:, :2, ...] + previous_boxes[:, 2:, ...]) / 2.
        bwh = (previous_boxes[:, 2:, ...] -
               previous_boxes[:, :2, ...]).clamp(min=1e-6)
        grid_topleft = bxy + bwh * reg[:, :2, ...] - 0.5 * bwh * torch.exp(
            reg[:, 2:, ...])
        grid_wh = bwh * torch.exp(reg[:, 2:, ...])
        grid_left = grid_topleft[:, [0], ...]
        grid_top = grid_topleft[:, [1], ...]
        grid_width = grid_wh[:, [0], ...]
        grid_height = grid_wh[:, [1], ...]
        intervel = torch.linspace(0., 1., self.dcn_kernel).view(
            1, self.dcn_kernel, 1, 1).type_as(reg)
        grid_x = grid_left + grid_width * intervel
        grid_x = grid_x.unsqueeze(1).repeat(1, self.dcn_kernel, 1, 1, 1)
        grid_x = grid_x.view(b, -1, h, w)
        grid_y = grid_top + grid_height * intervel
        grid_y = grid_y.unsqueeze(2).repeat(1, 1, self.dcn_kernel, 1, 1)
        grid_y = grid_y.view(b, -1, h, w)
        grid_yx = torch.stack([grid_y, grid_x], dim=2)
        grid_yx = grid_yx.view(b, -1, h, w)
        regressed_bbox = torch.cat([
            grid_left, grid_top, grid_left + grid_width, grid_top + grid_height
        ], 1)
        return grid_yx, regressed_bbox

    def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor]:
        return multi_apply(self.forward_single, feats)

    def forward_single(self, x: Tensor) -> Tuple[Tensor]:
        """Forward feature map of a single FPN level."""
        dcn_base_offset = self.dcn_base_offset.type_as(x)
        # If we use center_init, the initial reppoints is from center points.
        # If we use bounding bbox representation, the initial reppoints is
        #   from regular grid placed on a pre-defined bbox.
        if self.use_grid_points or not self.center_init:
            scale = self.point_base_scale / 2
            points_init = dcn_base_offset / dcn_base_offset.max() * scale
            bbox_init = x.new_tensor([-scale, -scale, scale,
                                      scale]).view(1, 4, 1, 1)
        else:
            points_init = 0
        cls_feat = x
        pts_feat = x
        for cls_conv in self.cls_convs:
            cls_feat = cls_conv(cls_feat)
        for reg_conv in self.reg_convs:
            pts_feat = reg_conv(pts_feat)
        # initialize reppoints
        pts_out_init = self.reppoints_pts_init_out(
            self.relu(self.reppoints_pts_init_conv(pts_feat)))
        if self.use_grid_points:
            pts_out_init, bbox_out_init = self.gen_grid_from_reg(
                pts_out_init, bbox_init.detach())
        else:
            pts_out_init = pts_out_init + points_init
        # refine and classify reppoints
        pts_out_init_grad_mul = (1 - self.gradient_mul) * pts_out_init.detach(
        ) + self.gradient_mul * pts_out_init
        dcn_offset = pts_out_init_grad_mul - dcn_base_offset
        cls_out = self.reppoints_cls_out(
            self.relu(self.reppoints_cls_conv(cls_feat, dcn_offset)))
        pts_out_refine = self.reppoints_pts_refine_out(
            self.relu(self.reppoints_pts_refine_conv(pts_feat, dcn_offset)))
        if self.use_grid_points:
            pts_out_refine, bbox_out_refine = self.gen_grid_from_reg(
                pts_out_refine, bbox_out_init.detach())
        else:
            pts_out_refine = pts_out_refine + pts_out_init.detach()

        if self.training:
            return cls_out, pts_out_init, pts_out_refine
        else:
            return cls_out, self.points2bbox(pts_out_refine)

    def get_points(self, featmap_sizes: List[Tuple[int]],
                   batch_img_metas: List[dict], device: str) -> tuple:
        """Get points according to feature map sizes.

        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            batch_img_metas (list[dict]): Image meta info.

        Returns:
            tuple: points of each image, valid flags of each image
        """
        num_imgs = len(batch_img_metas)

        # since feature map sizes of all images are the same, we only compute
        # points center for one time
        multi_level_points = self.prior_generator.grid_priors(
            featmap_sizes, device=device, with_stride=True)
        points_list = [[point.clone() for point in multi_level_points]
                       for _ in range(num_imgs)]

        # for each image, we compute valid flags of multi level grids
        valid_flag_list = []
        for img_id, img_meta in enumerate(batch_img_metas):
            multi_level_flags = self.prior_generator.valid_flags(
                featmap_sizes, img_meta['pad_shape'], device=device)
            valid_flag_list.append(multi_level_flags)

        return points_list, valid_flag_list

    def centers_to_bboxes(self, point_list: List[Tensor]) -> List[Tensor]:
        """Get bboxes according to center points.

        Only used in :class:`MaxIoUAssigner`.
        """
        bbox_list = []
        for i_img, point in enumerate(point_list):
            bbox = []
            for i_lvl in range(len(self.point_strides)):
                scale = self.point_base_scale * self.point_strides[i_lvl] * 0.5
                bbox_shift = torch.Tensor([-scale, -scale, scale,
                                           scale]).view(1, 4).type_as(point[0])
                bbox_center = torch.cat(
                    [point[i_lvl][:, :2], point[i_lvl][:, :2]], dim=1)
                bbox.append(bbox_center + bbox_shift)
            bbox_list.append(bbox)
        return bbox_list

    def offset_to_pts(self, center_list: List[Tensor],
                      pred_list: List[Tensor]) -> List[Tensor]:
        """Change from point offset to point coordinate."""
        pts_list = []
        for i_lvl in range(len(self.point_strides)):
            pts_lvl = []
            for i_img in range(len(center_list)):
                pts_center = center_list[i_img][i_lvl][:, :2].repeat(
                    1, self.num_points)
                pts_shift = pred_list[i_lvl][i_img]
                yx_pts_shift = pts_shift.permute(1, 2, 0).view(
                    -1, 2 * self.num_points)
                y_pts_shift = yx_pts_shift[..., 0::2]
                x_pts_shift = yx_pts_shift[..., 1::2]
                xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1)
                xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1)
                pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center
                pts_lvl.append(pts)
            pts_lvl = torch.stack(pts_lvl, 0)
            pts_list.append(pts_lvl)
        return pts_list

    def _get_targets_single(self,
                            flat_proposals: Tensor,
                            valid_flags: Tensor,
                            gt_instances: InstanceData,
                            gt_instances_ignore: InstanceData,
                            stage: str = 'init',
                            unmap_outputs: bool = True) -> tuple:
        """Compute corresponding GT box and classification targets for
        proposals.

        Args:
            flat_proposals (Tensor): Multi level points of a image.
            valid_flags (Tensor): Multi level valid flags of a image.
            gt_instances (InstanceData): It usually includes ``bboxes`` and
                ``labels`` attributes.
            gt_instances_ignore (InstanceData): It includes ``bboxes``
                attribute data that is ignored during training and testing.
            stage (str): 'init' or 'refine'. Generate target for
                init stage or refine stage. Defaults to 'init'.
            unmap_outputs (bool): Whether to map outputs back to
                the original set of anchors. Defaults to True.

        Returns:
            tuple:

                - labels (Tensor): Labels of each level.
                - label_weights (Tensor): Label weights of each level.
                - bbox_targets (Tensor): BBox targets of each level.
                - bbox_weights (Tensor): BBox weights of each level.
                - pos_inds (Tensor): positive samples indexes.
                - neg_inds (Tensor): negative samples indexes.
                - sampling_result (:obj:`SamplingResult`): Sampling results.
        """
        inside_flags = valid_flags
        if not inside_flags.any():
            raise ValueError(
                'There is no valid proposal inside the image boundary. Please '
                'check the image size.')
        # assign gt and sample proposals
        proposals = flat_proposals[inside_flags, :]
        pred_instances = InstanceData(priors=proposals)

        if stage == 'init':
            assigner = self.init_assigner
            pos_weight = self.train_cfg['init']['pos_weight']
        else:
            assigner = self.refine_assigner
            pos_weight = self.train_cfg['refine']['pos_weight']

        assign_result = assigner.assign(pred_instances, gt_instances,
                                        gt_instances_ignore)
        sampling_result = self.sampler.sample(assign_result, pred_instances,
                                              gt_instances)

        num_valid_proposals = proposals.shape[0]
        bbox_gt = proposals.new_zeros([num_valid_proposals, 4])
        pos_proposals = torch.zeros_like(proposals)
        proposals_weights = proposals.new_zeros([num_valid_proposals, 4])
        labels = proposals.new_full((num_valid_proposals, ),
                                    self.num_classes,
                                    dtype=torch.long)
        label_weights = proposals.new_zeros(
            num_valid_proposals, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            bbox_gt[pos_inds, :] = sampling_result.pos_gt_bboxes
            pos_proposals[pos_inds, :] = proposals[pos_inds, :]
            proposals_weights[pos_inds, :] = 1.0

            labels[pos_inds] = sampling_result.pos_gt_labels
            if pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = pos_weight
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of proposals
        if unmap_outputs:
            num_total_proposals = flat_proposals.size(0)
            labels = unmap(
                labels,
                num_total_proposals,
                inside_flags,
                fill=self.num_classes)  # fill bg label
            label_weights = unmap(label_weights, num_total_proposals,
                                  inside_flags)
            bbox_gt = unmap(bbox_gt, num_total_proposals, inside_flags)
            pos_proposals = unmap(pos_proposals, num_total_proposals,
                                  inside_flags)
            proposals_weights = unmap(proposals_weights, num_total_proposals,
                                      inside_flags)

        return (labels, label_weights, bbox_gt, pos_proposals,
                proposals_weights, pos_inds, neg_inds, sampling_result)

    def get_targets(self,
                    proposals_list: List[Tensor],
                    valid_flag_list: List[Tensor],
                    batch_gt_instances: InstanceList,
                    batch_img_metas: List[dict],
                    batch_gt_instances_ignore: OptInstanceList = None,
                    stage: str = 'init',
                    unmap_outputs: bool = True,
                    return_sampling_results: bool = False) -> tuple:
        """Compute corresponding GT box and classification targets for
        proposals.

        Args:
            proposals_list (list[Tensor]): Multi level points/bboxes of each
                image.
            valid_flag_list (list[Tensor]): Multi level valid flags of each
                image.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            stage (str): 'init' or 'refine'. Generate target for init stage or
                refine stage.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.
            return_sampling_results (bool): Whether to return the sampling
                results. Defaults to False.

        Returns:
            tuple:

                - labels_list (list[Tensor]): Labels of each level.
                - label_weights_list (list[Tensor]): Label weights of each
                  level.
                - bbox_gt_list (list[Tensor]): Ground truth bbox of each level.
                - proposals_list (list[Tensor]): Proposals(points/bboxes) of
                  each level.
                - proposal_weights_list (list[Tensor]): Proposal weights of
                  each level.
                - avg_factor (int): Average factor that is used to average
                  the loss. When using sampling method, avg_factor is usually
                  the sum of positive and negative priors. When using
                  `PseudoSampler`, `avg_factor` is usually equal to the number
                  of positive priors.
        """
        assert stage in ['init', 'refine']
        num_imgs = len(batch_img_metas)
        assert len(proposals_list) == len(valid_flag_list) == num_imgs

        # points number of multi levels
        num_level_proposals = [points.size(0) for points in proposals_list[0]]

        # concat all level points and flags to a single tensor
        for i in range(num_imgs):
            assert len(proposals_list[i]) == len(valid_flag_list[i])
            proposals_list[i] = torch.cat(proposals_list[i])
            valid_flag_list[i] = torch.cat(valid_flag_list[i])

        if batch_gt_instances_ignore is None:
            batch_gt_instances_ignore = [None] * num_imgs

        (all_labels, all_label_weights, all_bbox_gt, all_proposals,
         all_proposal_weights, pos_inds_list, neg_inds_list,
         sampling_results_list) = multi_apply(
             self._get_targets_single,
             proposals_list,
             valid_flag_list,
             batch_gt_instances,
             batch_gt_instances_ignore,
             stage=stage,
             unmap_outputs=unmap_outputs)

        # sampled points of all images
        avg_refactor = sum(
            [results.avg_factor for results in sampling_results_list])
        labels_list = images_to_levels(all_labels, num_level_proposals)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_proposals)
        bbox_gt_list = images_to_levels(all_bbox_gt, num_level_proposals)
        proposals_list = images_to_levels(all_proposals, num_level_proposals)
        proposal_weights_list = images_to_levels(all_proposal_weights,
                                                 num_level_proposals)
        res = (labels_list, label_weights_list, bbox_gt_list, proposals_list,
               proposal_weights_list, avg_refactor)
        if return_sampling_results:
            res = res + (sampling_results_list, )

        return res

    def loss_by_feat_single(self, cls_score: Tensor, pts_pred_init: Tensor,
                            pts_pred_refine: Tensor, labels: Tensor,
                            label_weights, bbox_gt_init: Tensor,
                            bbox_weights_init: Tensor, bbox_gt_refine: Tensor,
                            bbox_weights_refine: Tensor, stride: int,
                            avg_factor_init: int,
                            avg_factor_refine: int) -> Tuple[Tensor]:
        """Calculate the loss of a single scale level based on the features
        extracted by the detection head.

        Args:
            cls_score (Tensor): Box scores for each scale level
                Has shape (N, num_classes, h_i, w_i).
            pts_pred_init (Tensor): Points of shape
                (batch_size, h_i * w_i, num_points * 2).
            pts_pred_refine (Tensor): Points refined of shape
                (batch_size, h_i * w_i, num_points * 2).
            labels (Tensor): Ground truth class indices with shape
                (batch_size, h_i * w_i).
            label_weights (Tensor): Label weights of shape
                (batch_size, h_i * w_i).
            bbox_gt_init (Tensor): BBox regression targets in the init stage
                of shape (batch_size, h_i * w_i, 4).
            bbox_weights_init (Tensor): BBox regression loss weights in the
                init stage of shape (batch_size, h_i * w_i, 4).
            bbox_gt_refine (Tensor): BBox regression targets in the refine
                stage of shape (batch_size, h_i * w_i, 4).
            bbox_weights_refine (Tensor): BBox regression loss weights in the
                refine stage of shape (batch_size, h_i * w_i, 4).
            stride (int): Point stride.
            avg_factor_init (int): Average factor that is used to average
                the loss in the init stage.
            avg_factor_refine (int): Average factor that is used to average
                the loss in the refine stage.

        Returns:
            Tuple[Tensor]: loss components.
        """
        # classification loss
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3,
                                      1).reshape(-1, self.cls_out_channels)
        cls_score = cls_score.contiguous()
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=avg_factor_refine)

        # points loss
        bbox_gt_init = bbox_gt_init.reshape(-1, 4)
        bbox_weights_init = bbox_weights_init.reshape(-1, 4)
        bbox_pred_init = self.points2bbox(
            pts_pred_init.reshape(-1, 2 * self.num_points), y_first=False)
        bbox_gt_refine = bbox_gt_refine.reshape(-1, 4)
        bbox_weights_refine = bbox_weights_refine.reshape(-1, 4)
        bbox_pred_refine = self.points2bbox(
            pts_pred_refine.reshape(-1, 2 * self.num_points), y_first=False)
        normalize_term = self.point_base_scale * stride
        loss_pts_init = self.loss_bbox_init(
            bbox_pred_init / normalize_term,
            bbox_gt_init / normalize_term,
            bbox_weights_init,
            avg_factor=avg_factor_init)
        loss_pts_refine = self.loss_bbox_refine(
            bbox_pred_refine / normalize_term,
            bbox_gt_refine / normalize_term,
            bbox_weights_refine,
            avg_factor=avg_factor_refine)
        return loss_cls, loss_pts_init, loss_pts_refine

    def loss_by_feat(
        self,
        cls_scores: List[Tensor],
        pts_preds_init: List[Tensor],
        pts_preds_refine: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, of shape (batch_size, num_classes, h, w).
            pts_preds_init (list[Tensor]): Points for each scale level, each is
                a 3D-tensor, of shape (batch_size, h_i * w_i, num_points * 2).
            pts_preds_refine (list[Tensor]): Points refined for each scale
                level, each is a 3D-tensor, of shape
                (batch_size, h_i * w_i, num_points * 2).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        device = cls_scores[0].device

        # target for initial stage
        center_list, valid_flag_list = self.get_points(featmap_sizes,
                                                       batch_img_metas, device)
        pts_coordinate_preds_init = self.offset_to_pts(center_list,
                                                       pts_preds_init)
        if self.train_cfg['init']['assigner']['type'] == 'PointAssigner':
            # Assign target for center list
            candidate_list = center_list
        else:
            # transform center list to bbox list and
            #   assign target for bbox list
            bbox_list = self.centers_to_bboxes(center_list)
            candidate_list = bbox_list
        cls_reg_targets_init = self.get_targets(
            proposals_list=candidate_list,
            valid_flag_list=valid_flag_list,
            batch_gt_instances=batch_gt_instances,
            batch_img_metas=batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore,
            stage='init',
            return_sampling_results=False)
        (*_, bbox_gt_list_init, candidate_list_init, bbox_weights_list_init,
         avg_factor_init) = cls_reg_targets_init

        # target for refinement stage
        center_list, valid_flag_list = self.get_points(featmap_sizes,
                                                       batch_img_metas, device)
        pts_coordinate_preds_refine = self.offset_to_pts(
            center_list, pts_preds_refine)
        bbox_list = []
        for i_img, center in enumerate(center_list):
            bbox = []
            for i_lvl in range(len(pts_preds_refine)):
                bbox_preds_init = self.points2bbox(
                    pts_preds_init[i_lvl].detach())
                bbox_shift = bbox_preds_init * self.point_strides[i_lvl]
                bbox_center = torch.cat(
                    [center[i_lvl][:, :2], center[i_lvl][:, :2]], dim=1)
                bbox.append(bbox_center +
                            bbox_shift[i_img].permute(1, 2, 0).reshape(-1, 4))
            bbox_list.append(bbox)
        cls_reg_targets_refine = self.get_targets(
            proposals_list=bbox_list,
            valid_flag_list=valid_flag_list,
            batch_gt_instances=batch_gt_instances,
            batch_img_metas=batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore,
            stage='refine',
            return_sampling_results=False)
        (labels_list, label_weights_list, bbox_gt_list_refine,
         candidate_list_refine, bbox_weights_list_refine,
         avg_factor_refine) = cls_reg_targets_refine

        # compute loss
        losses_cls, losses_pts_init, losses_pts_refine = multi_apply(
            self.loss_by_feat_single,
            cls_scores,
            pts_coordinate_preds_init,
            pts_coordinate_preds_refine,
            labels_list,
            label_weights_list,
            bbox_gt_list_init,
            bbox_weights_list_init,
            bbox_gt_list_refine,
            bbox_weights_list_refine,
            self.point_strides,
            avg_factor_init=avg_factor_init,
            avg_factor_refine=avg_factor_refine)
        loss_dict_all = {
            'loss_cls': losses_cls,
            'loss_pts_init': losses_pts_init,
            'loss_pts_refine': losses_pts_refine
        }
        return loss_dict_all

    # Same as base_dense_head/_get_bboxes_single except self._bbox_decode
    def _predict_by_feat_single(self,
                                cls_score_list: List[Tensor],
                                bbox_pred_list: List[Tensor],
                                score_factor_list: List[Tensor],
                                mlvl_priors: List[Tensor],
                                img_meta: dict,
                                cfg: ConfigDict,
                                rescale: bool = False,
                                with_nms: bool = True) -> InstanceData:
        """Transform outputs of a single image into bbox predictions.

        Args:
            cls_score_list (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_priors * num_classes, H, W).
            bbox_pred_list (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has shape
                (num_priors * 4, H, W).
            score_factor_list (list[Tensor]): Score factor from all scale
                levels of a single image. RepPoints head does not need
                this value.
            mlvl_priors (list[Tensor]): Each element in the list is
                the priors of a single level in feature pyramid, has shape
                (num_priors, 2).
            img_meta (dict): Image meta info.
            cfg (:obj:`ConfigDict`): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to True.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        cfg = self.test_cfg if cfg is None else cfg
        assert len(cls_score_list) == len(bbox_pred_list)
        img_shape = img_meta['img_shape']
        nms_pre = cfg.get('nms_pre', -1)

        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_labels = []
        for level_idx, (cls_score, bbox_pred, priors) in enumerate(
                zip(cls_score_list, bbox_pred_list, mlvl_priors)):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.cls_out_channels)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)[:, :-1]

            # After https://github.com/open-mmlab/mmdetection/pull/6268/,
            # this operation keeps fewer bboxes under the same `nms_pre`.
            # There is no difference in performance for most models. If you
            # find a slight drop in performance, you can set a larger
            # `nms_pre` than before.
            results = filter_scores_and_topk(
                scores, cfg.score_thr, nms_pre,
                dict(bbox_pred=bbox_pred, priors=priors))
            scores, labels, _, filtered_results = results

            bbox_pred = filtered_results['bbox_pred']
            priors = filtered_results['priors']

            bboxes = self._bbox_decode(priors, bbox_pred,
                                       self.point_strides[level_idx],
                                       img_shape)

            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_labels.append(labels)

        results = InstanceData()
        results.bboxes = torch.cat(mlvl_bboxes)
        results.scores = torch.cat(mlvl_scores)
        results.labels = torch.cat(mlvl_labels)

        return self._bbox_post_process(
            results=results,
            cfg=cfg,
            rescale=rescale,
            with_nms=with_nms,
            img_meta=img_meta)

    def _bbox_decode(self, points: Tensor, bbox_pred: Tensor, stride: int,
                     max_shape: Tuple[int, int]) -> Tensor:
        """Decode the prediction to bounding box.

        Args:
            points (Tensor): shape (h_i * w_i, 2).
            bbox_pred (Tensor): shape (h_i * w_i, 4).
            stride (int): Stride for bbox_pred in different level.
            max_shape (Tuple[int, int]): image shape.

        Returns:
            Tensor: Bounding boxes decoded.
        """
        bbox_pos_center = torch.cat([points[:, :2], points[:, :2]], dim=1)
        bboxes = bbox_pred * stride + bbox_pos_center
        x1 = bboxes[:, 0].clamp(min=0, max=max_shape[1])
        y1 = bboxes[:, 1].clamp(min=0, max=max_shape[0])
        x2 = bboxes[:, 2].clamp(min=0, max=max_shape[1])
        y2 = bboxes[:, 3].clamp(min=0, max=max_shape[0])
        decoded_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
        return decoded_bboxes