Spaces:
Runtime error
Runtime error
File size: 40,982 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Sequence, Tuple
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.ops import DeformConv2d
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptInstanceList
from ..task_modules.prior_generators import MlvlPointGenerator
from ..task_modules.samplers import PseudoSampler
from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply,
unmap)
from .anchor_free_head import AnchorFreeHead
@MODELS.register_module()
class RepPointsHead(AnchorFreeHead):
"""RepPoint head.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
point_feat_channels (int): Number of channels of points features.
num_points (int): Number of points.
gradient_mul (float): The multiplier to gradients from
points refinement and recognition.
point_strides (Sequence[int]): points strides.
point_base_scale (int): bbox scale for assigning labels.
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
loss_bbox_init (:obj:`ConfigDict` or dict): Config of initial points
loss.
loss_bbox_refine (:obj:`ConfigDict` or dict): Config of points loss in
refinement.
use_grid_points (bool): If we use bounding box representation, the
reppoints is represented as grid points on the bounding box.
center_init (bool): Whether to use center point assignment.
transform_method (str): The methods to transform RepPoints to bbox.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict]): Initialization config dict.
""" # noqa: W605
def __init__(self,
num_classes: int,
in_channels: int,
point_feat_channels: int = 256,
num_points: int = 9,
gradient_mul: float = 0.1,
point_strides: Sequence[int] = [8, 16, 32, 64, 128],
point_base_scale: int = 4,
loss_cls: ConfigType = dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox_init: ConfigType = dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.5),
loss_bbox_refine: ConfigType = dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
use_grid_points: bool = False,
center_init: bool = True,
transform_method: str = 'moment',
moment_mul: float = 0.01,
init_cfg: MultiConfig = dict(
type='Normal',
layer='Conv2d',
std=0.01,
override=dict(
type='Normal',
name='reppoints_cls_out',
std=0.01,
bias_prob=0.01)),
**kwargs) -> None:
self.num_points = num_points
self.point_feat_channels = point_feat_channels
self.use_grid_points = use_grid_points
self.center_init = center_init
# we use deform conv to extract points features
self.dcn_kernel = int(np.sqrt(num_points))
self.dcn_pad = int((self.dcn_kernel - 1) / 2)
assert self.dcn_kernel * self.dcn_kernel == num_points, \
'The points number should be a square number.'
assert self.dcn_kernel % 2 == 1, \
'The points number should be an odd square number.'
dcn_base = np.arange(-self.dcn_pad,
self.dcn_pad + 1).astype(np.float64)
dcn_base_y = np.repeat(dcn_base, self.dcn_kernel)
dcn_base_x = np.tile(dcn_base, self.dcn_kernel)
dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape(
(-1))
self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1)
super().__init__(
num_classes=num_classes,
in_channels=in_channels,
loss_cls=loss_cls,
init_cfg=init_cfg,
**kwargs)
self.gradient_mul = gradient_mul
self.point_base_scale = point_base_scale
self.point_strides = point_strides
self.prior_generator = MlvlPointGenerator(
self.point_strides, offset=0.)
if self.train_cfg:
self.init_assigner = TASK_UTILS.build(
self.train_cfg['init']['assigner'])
self.refine_assigner = TASK_UTILS.build(
self.train_cfg['refine']['assigner'])
if self.train_cfg.get('sampler', None) is not None:
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
else:
self.sampler = PseudoSampler(context=self)
self.transform_method = transform_method
if self.transform_method == 'moment':
self.moment_transfer = nn.Parameter(
data=torch.zeros(2), requires_grad=True)
self.moment_mul = moment_mul
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
if self.use_sigmoid_cls:
self.cls_out_channels = self.num_classes
else:
self.cls_out_channels = self.num_classes + 1
self.loss_bbox_init = MODELS.build(loss_bbox_init)
self.loss_bbox_refine = MODELS.build(loss_bbox_refine)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
self.reppoints_cls_conv = DeformConv2d(self.feat_channels,
self.point_feat_channels,
self.dcn_kernel, 1,
self.dcn_pad)
self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
self.cls_out_channels, 1, 1, 0)
self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
self.point_feat_channels, 3,
1, 1)
self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)
self.reppoints_pts_refine_conv = DeformConv2d(self.feat_channels,
self.point_feat_channels,
self.dcn_kernel, 1,
self.dcn_pad)
self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)
def points2bbox(self, pts: Tensor, y_first: bool = True) -> Tensor:
"""Converting the points set into bounding box.
Args:
pts (Tensor): the input points sets (fields), each points
set (fields) is represented as 2n scalar.
y_first (bool): if y_first=True, the point set is
represented as [y1, x1, y2, x2 ... yn, xn], otherwise
the point set is represented as
[x1, y1, x2, y2 ... xn, yn]. Defaults to True.
Returns:
Tensor: each points set is converting to a bbox [x1, y1, x2, y2].
"""
pts_reshape = pts.view(pts.shape[0], -1, 2, *pts.shape[2:])
pts_y = pts_reshape[:, :, 0, ...] if y_first else pts_reshape[:, :, 1,
...]
pts_x = pts_reshape[:, :, 1, ...] if y_first else pts_reshape[:, :, 0,
...]
if self.transform_method == 'minmax':
bbox_left = pts_x.min(dim=1, keepdim=True)[0]
bbox_right = pts_x.max(dim=1, keepdim=True)[0]
bbox_up = pts_y.min(dim=1, keepdim=True)[0]
bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
dim=1)
elif self.transform_method == 'partial_minmax':
pts_y = pts_y[:, :4, ...]
pts_x = pts_x[:, :4, ...]
bbox_left = pts_x.min(dim=1, keepdim=True)[0]
bbox_right = pts_x.max(dim=1, keepdim=True)[0]
bbox_up = pts_y.min(dim=1, keepdim=True)[0]
bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
dim=1)
elif self.transform_method == 'moment':
pts_y_mean = pts_y.mean(dim=1, keepdim=True)
pts_x_mean = pts_x.mean(dim=1, keepdim=True)
pts_y_std = torch.std(pts_y - pts_y_mean, dim=1, keepdim=True)
pts_x_std = torch.std(pts_x - pts_x_mean, dim=1, keepdim=True)
moment_transfer = (self.moment_transfer * self.moment_mul) + (
self.moment_transfer.detach() * (1 - self.moment_mul))
moment_width_transfer = moment_transfer[0]
moment_height_transfer = moment_transfer[1]
half_width = pts_x_std * torch.exp(moment_width_transfer)
half_height = pts_y_std * torch.exp(moment_height_transfer)
bbox = torch.cat([
pts_x_mean - half_width, pts_y_mean - half_height,
pts_x_mean + half_width, pts_y_mean + half_height
],
dim=1)
else:
raise NotImplementedError
return bbox
def gen_grid_from_reg(self, reg: Tensor,
previous_boxes: Tensor) -> Tuple[Tensor]:
"""Base on the previous bboxes and regression values, we compute the
regressed bboxes and generate the grids on the bboxes.
Args:
reg (Tensor): the regression value to previous bboxes.
previous_boxes (Tensor): previous bboxes.
Returns:
Tuple[Tensor]: generate grids on the regressed bboxes.
"""
b, _, h, w = reg.shape
bxy = (previous_boxes[:, :2, ...] + previous_boxes[:, 2:, ...]) / 2.
bwh = (previous_boxes[:, 2:, ...] -
previous_boxes[:, :2, ...]).clamp(min=1e-6)
grid_topleft = bxy + bwh * reg[:, :2, ...] - 0.5 * bwh * torch.exp(
reg[:, 2:, ...])
grid_wh = bwh * torch.exp(reg[:, 2:, ...])
grid_left = grid_topleft[:, [0], ...]
grid_top = grid_topleft[:, [1], ...]
grid_width = grid_wh[:, [0], ...]
grid_height = grid_wh[:, [1], ...]
intervel = torch.linspace(0., 1., self.dcn_kernel).view(
1, self.dcn_kernel, 1, 1).type_as(reg)
grid_x = grid_left + grid_width * intervel
grid_x = grid_x.unsqueeze(1).repeat(1, self.dcn_kernel, 1, 1, 1)
grid_x = grid_x.view(b, -1, h, w)
grid_y = grid_top + grid_height * intervel
grid_y = grid_y.unsqueeze(2).repeat(1, 1, self.dcn_kernel, 1, 1)
grid_y = grid_y.view(b, -1, h, w)
grid_yx = torch.stack([grid_y, grid_x], dim=2)
grid_yx = grid_yx.view(b, -1, h, w)
regressed_bbox = torch.cat([
grid_left, grid_top, grid_left + grid_width, grid_top + grid_height
], 1)
return grid_yx, regressed_bbox
def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor]:
return multi_apply(self.forward_single, feats)
def forward_single(self, x: Tensor) -> Tuple[Tensor]:
"""Forward feature map of a single FPN level."""
dcn_base_offset = self.dcn_base_offset.type_as(x)
# If we use center_init, the initial reppoints is from center points.
# If we use bounding bbox representation, the initial reppoints is
# from regular grid placed on a pre-defined bbox.
if self.use_grid_points or not self.center_init:
scale = self.point_base_scale / 2
points_init = dcn_base_offset / dcn_base_offset.max() * scale
bbox_init = x.new_tensor([-scale, -scale, scale,
scale]).view(1, 4, 1, 1)
else:
points_init = 0
cls_feat = x
pts_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
pts_feat = reg_conv(pts_feat)
# initialize reppoints
pts_out_init = self.reppoints_pts_init_out(
self.relu(self.reppoints_pts_init_conv(pts_feat)))
if self.use_grid_points:
pts_out_init, bbox_out_init = self.gen_grid_from_reg(
pts_out_init, bbox_init.detach())
else:
pts_out_init = pts_out_init + points_init
# refine and classify reppoints
pts_out_init_grad_mul = (1 - self.gradient_mul) * pts_out_init.detach(
) + self.gradient_mul * pts_out_init
dcn_offset = pts_out_init_grad_mul - dcn_base_offset
cls_out = self.reppoints_cls_out(
self.relu(self.reppoints_cls_conv(cls_feat, dcn_offset)))
pts_out_refine = self.reppoints_pts_refine_out(
self.relu(self.reppoints_pts_refine_conv(pts_feat, dcn_offset)))
if self.use_grid_points:
pts_out_refine, bbox_out_refine = self.gen_grid_from_reg(
pts_out_refine, bbox_out_init.detach())
else:
pts_out_refine = pts_out_refine + pts_out_init.detach()
if self.training:
return cls_out, pts_out_init, pts_out_refine
else:
return cls_out, self.points2bbox(pts_out_refine)
def get_points(self, featmap_sizes: List[Tuple[int]],
batch_img_metas: List[dict], device: str) -> tuple:
"""Get points according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
batch_img_metas (list[dict]): Image meta info.
Returns:
tuple: points of each image, valid flags of each image
"""
num_imgs = len(batch_img_metas)
# since feature map sizes of all images are the same, we only compute
# points center for one time
multi_level_points = self.prior_generator.grid_priors(
featmap_sizes, device=device, with_stride=True)
points_list = [[point.clone() for point in multi_level_points]
for _ in range(num_imgs)]
# for each image, we compute valid flags of multi level grids
valid_flag_list = []
for img_id, img_meta in enumerate(batch_img_metas):
multi_level_flags = self.prior_generator.valid_flags(
featmap_sizes, img_meta['pad_shape'], device=device)
valid_flag_list.append(multi_level_flags)
return points_list, valid_flag_list
def centers_to_bboxes(self, point_list: List[Tensor]) -> List[Tensor]:
"""Get bboxes according to center points.
Only used in :class:`MaxIoUAssigner`.
"""
bbox_list = []
for i_img, point in enumerate(point_list):
bbox = []
for i_lvl in range(len(self.point_strides)):
scale = self.point_base_scale * self.point_strides[i_lvl] * 0.5
bbox_shift = torch.Tensor([-scale, -scale, scale,
scale]).view(1, 4).type_as(point[0])
bbox_center = torch.cat(
[point[i_lvl][:, :2], point[i_lvl][:, :2]], dim=1)
bbox.append(bbox_center + bbox_shift)
bbox_list.append(bbox)
return bbox_list
def offset_to_pts(self, center_list: List[Tensor],
pred_list: List[Tensor]) -> List[Tensor]:
"""Change from point offset to point coordinate."""
pts_list = []
for i_lvl in range(len(self.point_strides)):
pts_lvl = []
for i_img in range(len(center_list)):
pts_center = center_list[i_img][i_lvl][:, :2].repeat(
1, self.num_points)
pts_shift = pred_list[i_lvl][i_img]
yx_pts_shift = pts_shift.permute(1, 2, 0).view(
-1, 2 * self.num_points)
y_pts_shift = yx_pts_shift[..., 0::2]
x_pts_shift = yx_pts_shift[..., 1::2]
xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1)
xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1)
pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center
pts_lvl.append(pts)
pts_lvl = torch.stack(pts_lvl, 0)
pts_list.append(pts_lvl)
return pts_list
def _get_targets_single(self,
flat_proposals: Tensor,
valid_flags: Tensor,
gt_instances: InstanceData,
gt_instances_ignore: InstanceData,
stage: str = 'init',
unmap_outputs: bool = True) -> tuple:
"""Compute corresponding GT box and classification targets for
proposals.
Args:
flat_proposals (Tensor): Multi level points of a image.
valid_flags (Tensor): Multi level valid flags of a image.
gt_instances (InstanceData): It usually includes ``bboxes`` and
``labels`` attributes.
gt_instances_ignore (InstanceData): It includes ``bboxes``
attribute data that is ignored during training and testing.
stage (str): 'init' or 'refine'. Generate target for
init stage or refine stage. Defaults to 'init'.
unmap_outputs (bool): Whether to map outputs back to
the original set of anchors. Defaults to True.
Returns:
tuple:
- labels (Tensor): Labels of each level.
- label_weights (Tensor): Label weights of each level.
- bbox_targets (Tensor): BBox targets of each level.
- bbox_weights (Tensor): BBox weights of each level.
- pos_inds (Tensor): positive samples indexes.
- neg_inds (Tensor): negative samples indexes.
- sampling_result (:obj:`SamplingResult`): Sampling results.
"""
inside_flags = valid_flags
if not inside_flags.any():
raise ValueError(
'There is no valid proposal inside the image boundary. Please '
'check the image size.')
# assign gt and sample proposals
proposals = flat_proposals[inside_flags, :]
pred_instances = InstanceData(priors=proposals)
if stage == 'init':
assigner = self.init_assigner
pos_weight = self.train_cfg['init']['pos_weight']
else:
assigner = self.refine_assigner
pos_weight = self.train_cfg['refine']['pos_weight']
assign_result = assigner.assign(pred_instances, gt_instances,
gt_instances_ignore)
sampling_result = self.sampler.sample(assign_result, pred_instances,
gt_instances)
num_valid_proposals = proposals.shape[0]
bbox_gt = proposals.new_zeros([num_valid_proposals, 4])
pos_proposals = torch.zeros_like(proposals)
proposals_weights = proposals.new_zeros([num_valid_proposals, 4])
labels = proposals.new_full((num_valid_proposals, ),
self.num_classes,
dtype=torch.long)
label_weights = proposals.new_zeros(
num_valid_proposals, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
bbox_gt[pos_inds, :] = sampling_result.pos_gt_bboxes
pos_proposals[pos_inds, :] = proposals[pos_inds, :]
proposals_weights[pos_inds, :] = 1.0
labels[pos_inds] = sampling_result.pos_gt_labels
if pos_weight <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = pos_weight
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of proposals
if unmap_outputs:
num_total_proposals = flat_proposals.size(0)
labels = unmap(
labels,
num_total_proposals,
inside_flags,
fill=self.num_classes) # fill bg label
label_weights = unmap(label_weights, num_total_proposals,
inside_flags)
bbox_gt = unmap(bbox_gt, num_total_proposals, inside_flags)
pos_proposals = unmap(pos_proposals, num_total_proposals,
inside_flags)
proposals_weights = unmap(proposals_weights, num_total_proposals,
inside_flags)
return (labels, label_weights, bbox_gt, pos_proposals,
proposals_weights, pos_inds, neg_inds, sampling_result)
def get_targets(self,
proposals_list: List[Tensor],
valid_flag_list: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
stage: str = 'init',
unmap_outputs: bool = True,
return_sampling_results: bool = False) -> tuple:
"""Compute corresponding GT box and classification targets for
proposals.
Args:
proposals_list (list[Tensor]): Multi level points/bboxes of each
image.
valid_flag_list (list[Tensor]): Multi level valid flags of each
image.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
stage (str): 'init' or 'refine'. Generate target for init stage or
refine stage.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
return_sampling_results (bool): Whether to return the sampling
results. Defaults to False.
Returns:
tuple:
- labels_list (list[Tensor]): Labels of each level.
- label_weights_list (list[Tensor]): Label weights of each
level.
- bbox_gt_list (list[Tensor]): Ground truth bbox of each level.
- proposals_list (list[Tensor]): Proposals(points/bboxes) of
each level.
- proposal_weights_list (list[Tensor]): Proposal weights of
each level.
- avg_factor (int): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
"""
assert stage in ['init', 'refine']
num_imgs = len(batch_img_metas)
assert len(proposals_list) == len(valid_flag_list) == num_imgs
# points number of multi levels
num_level_proposals = [points.size(0) for points in proposals_list[0]]
# concat all level points and flags to a single tensor
for i in range(num_imgs):
assert len(proposals_list[i]) == len(valid_flag_list[i])
proposals_list[i] = torch.cat(proposals_list[i])
valid_flag_list[i] = torch.cat(valid_flag_list[i])
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None] * num_imgs
(all_labels, all_label_weights, all_bbox_gt, all_proposals,
all_proposal_weights, pos_inds_list, neg_inds_list,
sampling_results_list) = multi_apply(
self._get_targets_single,
proposals_list,
valid_flag_list,
batch_gt_instances,
batch_gt_instances_ignore,
stage=stage,
unmap_outputs=unmap_outputs)
# sampled points of all images
avg_refactor = sum(
[results.avg_factor for results in sampling_results_list])
labels_list = images_to_levels(all_labels, num_level_proposals)
label_weights_list = images_to_levels(all_label_weights,
num_level_proposals)
bbox_gt_list = images_to_levels(all_bbox_gt, num_level_proposals)
proposals_list = images_to_levels(all_proposals, num_level_proposals)
proposal_weights_list = images_to_levels(all_proposal_weights,
num_level_proposals)
res = (labels_list, label_weights_list, bbox_gt_list, proposals_list,
proposal_weights_list, avg_refactor)
if return_sampling_results:
res = res + (sampling_results_list, )
return res
def loss_by_feat_single(self, cls_score: Tensor, pts_pred_init: Tensor,
pts_pred_refine: Tensor, labels: Tensor,
label_weights, bbox_gt_init: Tensor,
bbox_weights_init: Tensor, bbox_gt_refine: Tensor,
bbox_weights_refine: Tensor, stride: int,
avg_factor_init: int,
avg_factor_refine: int) -> Tuple[Tensor]:
"""Calculate the loss of a single scale level based on the features
extracted by the detection head.
Args:
cls_score (Tensor): Box scores for each scale level
Has shape (N, num_classes, h_i, w_i).
pts_pred_init (Tensor): Points of shape
(batch_size, h_i * w_i, num_points * 2).
pts_pred_refine (Tensor): Points refined of shape
(batch_size, h_i * w_i, num_points * 2).
labels (Tensor): Ground truth class indices with shape
(batch_size, h_i * w_i).
label_weights (Tensor): Label weights of shape
(batch_size, h_i * w_i).
bbox_gt_init (Tensor): BBox regression targets in the init stage
of shape (batch_size, h_i * w_i, 4).
bbox_weights_init (Tensor): BBox regression loss weights in the
init stage of shape (batch_size, h_i * w_i, 4).
bbox_gt_refine (Tensor): BBox regression targets in the refine
stage of shape (batch_size, h_i * w_i, 4).
bbox_weights_refine (Tensor): BBox regression loss weights in the
refine stage of shape (batch_size, h_i * w_i, 4).
stride (int): Point stride.
avg_factor_init (int): Average factor that is used to average
the loss in the init stage.
avg_factor_refine (int): Average factor that is used to average
the loss in the refine stage.
Returns:
Tuple[Tensor]: loss components.
"""
# classification loss
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
cls_score = cls_score.permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
cls_score = cls_score.contiguous()
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=avg_factor_refine)
# points loss
bbox_gt_init = bbox_gt_init.reshape(-1, 4)
bbox_weights_init = bbox_weights_init.reshape(-1, 4)
bbox_pred_init = self.points2bbox(
pts_pred_init.reshape(-1, 2 * self.num_points), y_first=False)
bbox_gt_refine = bbox_gt_refine.reshape(-1, 4)
bbox_weights_refine = bbox_weights_refine.reshape(-1, 4)
bbox_pred_refine = self.points2bbox(
pts_pred_refine.reshape(-1, 2 * self.num_points), y_first=False)
normalize_term = self.point_base_scale * stride
loss_pts_init = self.loss_bbox_init(
bbox_pred_init / normalize_term,
bbox_gt_init / normalize_term,
bbox_weights_init,
avg_factor=avg_factor_init)
loss_pts_refine = self.loss_bbox_refine(
bbox_pred_refine / normalize_term,
bbox_gt_refine / normalize_term,
bbox_weights_refine,
avg_factor=avg_factor_refine)
return loss_cls, loss_pts_init, loss_pts_refine
def loss_by_feat(
self,
cls_scores: List[Tensor],
pts_preds_init: List[Tensor],
pts_preds_refine: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level,
each is a 4D-tensor, of shape (batch_size, num_classes, h, w).
pts_preds_init (list[Tensor]): Points for each scale level, each is
a 3D-tensor, of shape (batch_size, h_i * w_i, num_points * 2).
pts_preds_refine (list[Tensor]): Points refined for each scale
level, each is a 3D-tensor, of shape
(batch_size, h_i * w_i, num_points * 2).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
device = cls_scores[0].device
# target for initial stage
center_list, valid_flag_list = self.get_points(featmap_sizes,
batch_img_metas, device)
pts_coordinate_preds_init = self.offset_to_pts(center_list,
pts_preds_init)
if self.train_cfg['init']['assigner']['type'] == 'PointAssigner':
# Assign target for center list
candidate_list = center_list
else:
# transform center list to bbox list and
# assign target for bbox list
bbox_list = self.centers_to_bboxes(center_list)
candidate_list = bbox_list
cls_reg_targets_init = self.get_targets(
proposals_list=candidate_list,
valid_flag_list=valid_flag_list,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore,
stage='init',
return_sampling_results=False)
(*_, bbox_gt_list_init, candidate_list_init, bbox_weights_list_init,
avg_factor_init) = cls_reg_targets_init
# target for refinement stage
center_list, valid_flag_list = self.get_points(featmap_sizes,
batch_img_metas, device)
pts_coordinate_preds_refine = self.offset_to_pts(
center_list, pts_preds_refine)
bbox_list = []
for i_img, center in enumerate(center_list):
bbox = []
for i_lvl in range(len(pts_preds_refine)):
bbox_preds_init = self.points2bbox(
pts_preds_init[i_lvl].detach())
bbox_shift = bbox_preds_init * self.point_strides[i_lvl]
bbox_center = torch.cat(
[center[i_lvl][:, :2], center[i_lvl][:, :2]], dim=1)
bbox.append(bbox_center +
bbox_shift[i_img].permute(1, 2, 0).reshape(-1, 4))
bbox_list.append(bbox)
cls_reg_targets_refine = self.get_targets(
proposals_list=bbox_list,
valid_flag_list=valid_flag_list,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore,
stage='refine',
return_sampling_results=False)
(labels_list, label_weights_list, bbox_gt_list_refine,
candidate_list_refine, bbox_weights_list_refine,
avg_factor_refine) = cls_reg_targets_refine
# compute loss
losses_cls, losses_pts_init, losses_pts_refine = multi_apply(
self.loss_by_feat_single,
cls_scores,
pts_coordinate_preds_init,
pts_coordinate_preds_refine,
labels_list,
label_weights_list,
bbox_gt_list_init,
bbox_weights_list_init,
bbox_gt_list_refine,
bbox_weights_list_refine,
self.point_strides,
avg_factor_init=avg_factor_init,
avg_factor_refine=avg_factor_refine)
loss_dict_all = {
'loss_cls': losses_cls,
'loss_pts_init': losses_pts_init,
'loss_pts_refine': losses_pts_refine
}
return loss_dict_all
# Same as base_dense_head/_get_bboxes_single except self._bbox_decode
def _predict_by_feat_single(self,
cls_score_list: List[Tensor],
bbox_pred_list: List[Tensor],
score_factor_list: List[Tensor],
mlvl_priors: List[Tensor],
img_meta: dict,
cfg: ConfigDict,
rescale: bool = False,
with_nms: bool = True) -> InstanceData:
"""Transform outputs of a single image into bbox predictions.
Args:
cls_score_list (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_priors * num_classes, H, W).
bbox_pred_list (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has shape
(num_priors * 4, H, W).
score_factor_list (list[Tensor]): Score factor from all scale
levels of a single image. RepPoints head does not need
this value.
mlvl_priors (list[Tensor]): Each element in the list is
the priors of a single level in feature pyramid, has shape
(num_priors, 2).
img_meta (dict): Image meta info.
cfg (:obj:`ConfigDict`): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
cfg = self.test_cfg if cfg is None else cfg
assert len(cls_score_list) == len(bbox_pred_list)
img_shape = img_meta['img_shape']
nms_pre = cfg.get('nms_pre', -1)
mlvl_bboxes = []
mlvl_scores = []
mlvl_labels = []
for level_idx, (cls_score, bbox_pred, priors) in enumerate(
zip(cls_score_list, bbox_pred_list, mlvl_priors)):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.cls_out_channels)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
scores = cls_score.softmax(-1)[:, :-1]
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
# this operation keeps fewer bboxes under the same `nms_pre`.
# There is no difference in performance for most models. If you
# find a slight drop in performance, you can set a larger
# `nms_pre` than before.
results = filter_scores_and_topk(
scores, cfg.score_thr, nms_pre,
dict(bbox_pred=bbox_pred, priors=priors))
scores, labels, _, filtered_results = results
bbox_pred = filtered_results['bbox_pred']
priors = filtered_results['priors']
bboxes = self._bbox_decode(priors, bbox_pred,
self.point_strides[level_idx],
img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_labels.append(labels)
results = InstanceData()
results.bboxes = torch.cat(mlvl_bboxes)
results.scores = torch.cat(mlvl_scores)
results.labels = torch.cat(mlvl_labels)
return self._bbox_post_process(
results=results,
cfg=cfg,
rescale=rescale,
with_nms=with_nms,
img_meta=img_meta)
def _bbox_decode(self, points: Tensor, bbox_pred: Tensor, stride: int,
max_shape: Tuple[int, int]) -> Tensor:
"""Decode the prediction to bounding box.
Args:
points (Tensor): shape (h_i * w_i, 2).
bbox_pred (Tensor): shape (h_i * w_i, 4).
stride (int): Stride for bbox_pred in different level.
max_shape (Tuple[int, int]): image shape.
Returns:
Tensor: Bounding boxes decoded.
"""
bbox_pos_center = torch.cat([points[:, :2], points[:, :2]], dim=1)
bboxes = bbox_pred * stride + bbox_pos_center
x1 = bboxes[:, 0].clamp(min=0, max=max_shape[1])
y1 = bboxes[:, 1].clamp(min=0, max=max_shape[0])
x2 = bboxes[:, 2].clamp(min=0, max=max_shape[1])
y2 = bboxes[:, 3].clamp(min=0, max=max_shape[0])
decoded_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
return decoded_bboxes
|