File size: 1,645 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
    num_classes=1000,
    # RGB format normalization parameters
    mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
    std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
    # convert image from BGR to RGB
    to_rgb=True,
)

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='RandomResizedCrop',
        scale=336,
        backend='pillow',
        interpolation='bicubic'),
    dict(type='RandomFlip', prob=0.5, direction='horizontal'),
    dict(type='PackClsInputs'),
]

test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='ResizeEdge',
        scale=336,
        edge='short',
        backend='pillow',
        interpolation='bicubic'),
    dict(type='CenterCrop', crop_size=336),
    dict(type='PackClsInputs'),
]

train_dataloader = dict(
    batch_size=16,
    num_workers=5,
    dataset=dict(
        type=dataset_type,
        data_root='data/imagenet',
        ann_file='meta/train.txt',
        data_prefix='train',
        pipeline=train_pipeline),
    sampler=dict(type='DefaultSampler', shuffle=True),
)

val_dataloader = dict(
    batch_size=16,
    num_workers=5,
    dataset=dict(
        type=dataset_type,
        data_root='data/imagenet',
        ann_file='meta/val.txt',
        data_prefix='val',
        pipeline=test_pipeline),
    sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))

# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator