Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import csv | |
import os | |
import os.path as osp | |
from typing import List, Sequence | |
import numpy as np | |
import torch | |
from mmengine.dist.utils import get_rank | |
from mmengine.evaluator import BaseMetric | |
from mmpretrain.registry import METRICS | |
class ShapeBiasMetric(BaseMetric): | |
"""Evaluate the model on ``cue_conflict`` dataset. | |
This module will evaluate the model on an OOD dataset, cue_conflict, in | |
order to measure the shape bias of the model. In addition to compuate the | |
Top-1 accuracy, this module also generate a csv file to record the | |
detailed prediction results, such that this csv file can be used to | |
generate the shape bias curve. | |
Args: | |
csv_dir (str): The directory to save the csv file. | |
model_name (str): The name of the csv file. Please note that the | |
model name should be an unique identifier. | |
dataset_name (str): The name of the dataset. Default: 'cue_conflict'. | |
""" | |
# mapping several classes from ImageNet-1K to the same category | |
airplane_indices = [404] | |
bear_indices = [294, 295, 296, 297] | |
bicycle_indices = [444, 671] | |
bird_indices = [ | |
8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 80, 81, 82, 83, | |
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 127, 128, 129, | |
130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, | |
145 | |
] | |
boat_indices = [472, 554, 625, 814, 914] | |
bottle_indices = [440, 720, 737, 898, 899, 901, 907] | |
car_indices = [436, 511, 817] | |
cat_indices = [281, 282, 283, 284, 285, 286] | |
chair_indices = [423, 559, 765, 857] | |
clock_indices = [409, 530, 892] | |
dog_indices = [ | |
152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, | |
166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, | |
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 193, 194, | |
195, 196, 197, 198, 199, 200, 201, 202, 203, 205, 206, 207, 208, 209, | |
210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, | |
224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, | |
239, 240, 241, 243, 244, 245, 246, 247, 248, 249, 250, 252, 253, 254, | |
255, 256, 257, 259, 261, 262, 263, 265, 266, 267, 268 | |
] | |
elephant_indices = [385, 386] | |
keyboard_indices = [508, 878] | |
knife_indices = [499] | |
oven_indices = [766] | |
truck_indices = [555, 569, 656, 675, 717, 734, 864, 867] | |
def __init__(self, | |
csv_dir: str, | |
model_name: str, | |
dataset_name: str = 'cue_conflict', | |
**kwargs) -> None: | |
super().__init__(**kwargs) | |
self.categories = sorted([ | |
'knife', 'keyboard', 'elephant', 'bicycle', 'airplane', 'clock', | |
'oven', 'chair', 'bear', 'boat', 'cat', 'bottle', 'truck', 'car', | |
'bird', 'dog' | |
]) | |
self.csv_dir = csv_dir | |
self.model_name = model_name | |
self.dataset_name = dataset_name | |
if get_rank() == 0: | |
self.csv_path = self.create_csv() | |
def process(self, data_batch, data_samples: Sequence[dict]) -> None: | |
"""Process one batch of data samples. | |
The processed results should be stored in ``self.results``, which will | |
be used to computed the metrics when all batches have been processed. | |
Args: | |
data_batch: A batch of data from the dataloader. | |
data_samples (Sequence[dict]): A batch of outputs from the model. | |
""" | |
for data_sample in data_samples: | |
result = dict() | |
if 'pred_score' in data_sample: | |
result['pred_score'] = data_sample['pred_score'].cpu() | |
else: | |
result['pred_label'] = data_sample['pred_label'].cpu() | |
result['gt_label'] = data_sample['gt_label'].cpu() | |
result['gt_category'] = data_sample['img_path'].split('/')[-2] | |
result['img_name'] = data_sample['img_path'].split('/')[-1] | |
aggregated_category_probabilities = [] | |
# get the prediction for each category of current instance | |
for category in self.categories: | |
category_indices = getattr(self, f'{category}_indices') | |
category_probabilities = torch.gather( | |
result['pred_score'], 0, | |
torch.tensor(category_indices)).mean() | |
aggregated_category_probabilities.append( | |
category_probabilities) | |
# sort the probabilities in descending order | |
pred_indices = torch.stack(aggregated_category_probabilities | |
).argsort(descending=True).numpy() | |
result['pred_category'] = np.take(self.categories, pred_indices) | |
# Save the result to `self.results`. | |
self.results.append(result) | |
def create_csv(self) -> str: | |
"""Create a csv file to store the results.""" | |
session_name = 'session-1' | |
csv_path = osp.join( | |
self.csv_dir, self.dataset_name + '_' + self.model_name + '_' + | |
session_name + '.csv') | |
if osp.exists(csv_path): | |
os.remove(csv_path) | |
directory = osp.dirname(csv_path) | |
if not osp.exists(directory): | |
os.makedirs(directory, exist_ok=True) | |
with open(csv_path, 'w') as f: | |
writer = csv.writer(f) | |
writer.writerow([ | |
'subj', 'session', 'trial', 'rt', 'object_response', | |
'category', 'condition', 'imagename' | |
]) | |
return csv_path | |
def dump_results_to_csv(self, results: List[dict]) -> None: | |
"""Dump the results to a csv file. | |
Args: | |
results (List[dict]): A list of results. | |
""" | |
for i, result in enumerate(results): | |
img_name = result['img_name'] | |
category = result['gt_category'] | |
condition = 'NaN' | |
with open(self.csv_path, 'a') as f: | |
writer = csv.writer(f) | |
writer.writerow([ | |
self.model_name, 1, i + 1, 'NaN', | |
result['pred_category'][0], category, condition, img_name | |
]) | |
def compute_metrics(self, results: List[dict]) -> dict: | |
"""Compute the metrics from the results. | |
Args: | |
results (List[dict]): A list of results. | |
Returns: | |
dict: A dict of metrics. | |
""" | |
if get_rank() == 0: | |
self.dump_results_to_csv(results) | |
metrics = dict() | |
metrics['accuracy/top1'] = np.mean([ | |
result['pred_category'][0] == result['gt_category'] | |
for result in results | |
]) | |
return metrics | |