File size: 6,827 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) OpenMMLab. All rights reserved.
import csv
import os
import os.path as osp
from typing import List, Sequence

import numpy as np
import torch
from mmengine.dist.utils import get_rank
from mmengine.evaluator import BaseMetric

from mmpretrain.registry import METRICS


@METRICS.register_module()
class ShapeBiasMetric(BaseMetric):
    """Evaluate the model on ``cue_conflict`` dataset.

    This module will evaluate the model on an OOD dataset, cue_conflict, in
    order to measure the shape bias of the model. In addition to compuate the
    Top-1 accuracy, this module also generate a csv file to record the
    detailed prediction results, such that this csv file can be used to
    generate the shape bias curve.

    Args:
        csv_dir (str): The directory to save the csv file.
        model_name (str): The name of the csv file. Please note that the
            model name should be an unique identifier.
        dataset_name (str): The name of the dataset. Default: 'cue_conflict'.
    """

    # mapping several classes from ImageNet-1K to the same category
    airplane_indices = [404]
    bear_indices = [294, 295, 296, 297]
    bicycle_indices = [444, 671]
    bird_indices = [
        8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 80, 81, 82, 83,
        87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 127, 128, 129,
        130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
        145
    ]
    boat_indices = [472, 554, 625, 814, 914]
    bottle_indices = [440, 720, 737, 898, 899, 901, 907]
    car_indices = [436, 511, 817]
    cat_indices = [281, 282, 283, 284, 285, 286]
    chair_indices = [423, 559, 765, 857]
    clock_indices = [409, 530, 892]
    dog_indices = [
        152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
        166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
        180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 193, 194,
        195, 196, 197, 198, 199, 200, 201, 202, 203, 205, 206, 207, 208, 209,
        210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
        224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238,
        239, 240, 241, 243, 244, 245, 246, 247, 248, 249, 250, 252, 253, 254,
        255, 256, 257, 259, 261, 262, 263, 265, 266, 267, 268
    ]
    elephant_indices = [385, 386]
    keyboard_indices = [508, 878]
    knife_indices = [499]
    oven_indices = [766]
    truck_indices = [555, 569, 656, 675, 717, 734, 864, 867]

    def __init__(self,
                 csv_dir: str,
                 model_name: str,
                 dataset_name: str = 'cue_conflict',
                 **kwargs) -> None:
        super().__init__(**kwargs)

        self.categories = sorted([
            'knife', 'keyboard', 'elephant', 'bicycle', 'airplane', 'clock',
            'oven', 'chair', 'bear', 'boat', 'cat', 'bottle', 'truck', 'car',
            'bird', 'dog'
        ])
        self.csv_dir = csv_dir
        self.model_name = model_name
        self.dataset_name = dataset_name
        if get_rank() == 0:
            self.csv_path = self.create_csv()

    def process(self, data_batch, data_samples: Sequence[dict]) -> None:
        """Process one batch of data samples.

        The processed results should be stored in ``self.results``, which will
        be used to computed the metrics when all batches have been processed.

        Args:
            data_batch: A batch of data from the dataloader.
            data_samples (Sequence[dict]): A batch of outputs from the model.
        """
        for data_sample in data_samples:
            result = dict()
            if 'pred_score' in data_sample:
                result['pred_score'] = data_sample['pred_score'].cpu()
            else:
                result['pred_label'] = data_sample['pred_label'].cpu()
            result['gt_label'] = data_sample['gt_label'].cpu()
            result['gt_category'] = data_sample['img_path'].split('/')[-2]
            result['img_name'] = data_sample['img_path'].split('/')[-1]

            aggregated_category_probabilities = []
            # get the prediction for each category of current instance
            for category in self.categories:
                category_indices = getattr(self, f'{category}_indices')
                category_probabilities = torch.gather(
                    result['pred_score'], 0,
                    torch.tensor(category_indices)).mean()
                aggregated_category_probabilities.append(
                    category_probabilities)
            # sort the probabilities in descending order
            pred_indices = torch.stack(aggregated_category_probabilities
                                       ).argsort(descending=True).numpy()
            result['pred_category'] = np.take(self.categories, pred_indices)

            # Save the result to `self.results`.
            self.results.append(result)

    def create_csv(self) -> str:
        """Create a csv file to store the results."""
        session_name = 'session-1'
        csv_path = osp.join(
            self.csv_dir, self.dataset_name + '_' + self.model_name + '_' +
            session_name + '.csv')
        if osp.exists(csv_path):
            os.remove(csv_path)
        directory = osp.dirname(csv_path)
        if not osp.exists(directory):
            os.makedirs(directory, exist_ok=True)
        with open(csv_path, 'w') as f:
            writer = csv.writer(f)
            writer.writerow([
                'subj', 'session', 'trial', 'rt', 'object_response',
                'category', 'condition', 'imagename'
            ])
        return csv_path

    def dump_results_to_csv(self, results: List[dict]) -> None:
        """Dump the results to a csv file.

        Args:
            results (List[dict]): A list of results.
        """
        for i, result in enumerate(results):
            img_name = result['img_name']
            category = result['gt_category']
            condition = 'NaN'
            with open(self.csv_path, 'a') as f:
                writer = csv.writer(f)
                writer.writerow([
                    self.model_name, 1, i + 1, 'NaN',
                    result['pred_category'][0], category, condition, img_name
                ])

    def compute_metrics(self, results: List[dict]) -> dict:
        """Compute the metrics from the results.

        Args:
            results (List[dict]): A list of results.

        Returns:
            dict: A dict of metrics.
        """
        if get_rank() == 0:
            self.dump_results_to_csv(results)
        metrics = dict()
        metrics['accuracy/top1'] = np.mean([
            result['pred_category'][0] == result['gt_category']
            for result in results
        ])

        return metrics