TTP / mmpretrain /configs /beitv2 /beitv2_beit-base-p16_8xb256-amp-coslr-1600e_in1k.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
with read_base():
from .._base_.datasets.imagenet_bs256_beitv2 import *
from .._base_.default_runtime import *
from mmengine.model import ConstantInit, PretrainedInit, TruncNormalInit
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from mmengine.runner import EpochBasedTrainLoop
from torch.optim import AdamW
from mmpretrain.models import (VQKD, BEiT, BEiTPretrainViT, BEiTV2Head,
BEiTV2Neck, CrossEntropyLoss)
vqkd_encoder = dict(
arch='base',
img_size=224,
patch_size=16,
in_channels=3,
out_indices=-1,
drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN', eps=1e-6),
final_norm=True,
out_type='featmap',
with_cls_token=True,
frozen_stages=-1,
use_abs_pos_emb=True,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
layer_scale_init_value=0.,
interpolate_mode='bicubic',
patch_cfg=dict(),
layer_cfgs=dict(),
init_cfg=None)
layer_scale_init_value = 0.1
drop_path_rate = 0.1 # 0. for 300 epochs and 0.1 for 1600 epochs.
model = dict(
type=BEiT,
backbone=dict(
type=BEiTPretrainViT,
arch='base',
patch_size=16,
out_indices=[-4, -1],
drop_path_rate=drop_path_rate,
final_norm=False,
out_type='raw',
layer_scale_init_value=layer_scale_init_value,
init_cfg=[
dict(type=TruncNormalInit, std=0.02, layer='Linear'),
dict(type=TruncNormalInit, std=0.02, layer='Conv2d'),
dict(type=ConstantInit, layer='LayerNorm', val=1.0, bias=0.0)
]),
neck=dict(
type=BEiTV2Neck,
num_layers=2,
early_layers=9,
backbone_arch='base',
drop_path_rate=drop_path_rate,
layer_scale_init_value=layer_scale_init_value,
),
head=dict(
type=BEiTV2Head,
embed_dims=768,
num_embed=8192,
loss=dict(type=CrossEntropyLoss)),
target_generator=dict(
type=VQKD,
encoder_config=vqkd_encoder,
init_cfg=dict(
type=PretrainedInit,
checkpoint= # noqa
'https://download.openmmlab.com/mmselfsup/1.x/target_generator_ckpt/vqkd_encoder.pth' # noqa
)))
# optimizer wrapper
optim_wrapper = dict(
type=AmpOptimWrapper,
loss_scale='dynamic',
# betas: (0.9, 0.98) for 300 epochs and (0.9, 0.999) for 1600 epochs.
optimizer=dict(
type=AdamW, lr=1.5e-3, betas=(0.9, 0.999), weight_decay=0.05),
clip_grad=dict(max_norm=3.0),
paramwise_cfg=dict(
custom_keys={
# the following configurations are designed for BEiT
'.ln': dict(decay_mult=0.0),
'.bias': dict(decay_mult=0.0),
'q_bias': dict(decay_mult=0.0),
'v_bias': dict(decay_mult=0.0),
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0),
'.gamma': dict(decay_mult=0.0),
}))
# learning rate scheduler
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=1e-5,
by_epoch=True,
begin=10,
end=1600,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type=EpochBasedTrainLoop, max_epochs=1600)
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type=CheckpointHook, interval=1, max_keep_ckpts=3))
randomness = dict(seed=0, diff_rank_seed=True)
find_unused_parameters = True
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)