File size: 3,940 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base

with read_base():
    from .._base_.datasets.imagenet_bs256_beitv2 import *
    from .._base_.default_runtime import *

from mmengine.model import ConstantInit, PretrainedInit, TruncNormalInit
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from mmengine.runner import EpochBasedTrainLoop
from torch.optim import AdamW

from mmpretrain.models import (VQKD, BEiT, BEiTPretrainViT, BEiTV2Head,
                               BEiTV2Neck, CrossEntropyLoss)

vqkd_encoder = dict(
    arch='base',
    img_size=224,
    patch_size=16,
    in_channels=3,
    out_indices=-1,
    drop_rate=0.,
    drop_path_rate=0.,
    norm_cfg=dict(type='LN', eps=1e-6),
    final_norm=True,
    out_type='featmap',
    with_cls_token=True,
    frozen_stages=-1,
    use_abs_pos_emb=True,
    use_rel_pos_bias=False,
    use_shared_rel_pos_bias=False,
    layer_scale_init_value=0.,
    interpolate_mode='bicubic',
    patch_cfg=dict(),
    layer_cfgs=dict(),
    init_cfg=None)

layer_scale_init_value = 0.1
drop_path_rate = 0.1  # 0. for 300 epochs and 0.1 for 1600 epochs.

model = dict(
    type=BEiT,
    backbone=dict(
        type=BEiTPretrainViT,
        arch='base',
        patch_size=16,
        out_indices=[-4, -1],
        drop_path_rate=drop_path_rate,
        final_norm=False,
        out_type='raw',
        layer_scale_init_value=layer_scale_init_value,
        init_cfg=[
            dict(type=TruncNormalInit, std=0.02, layer='Linear'),
            dict(type=TruncNormalInit, std=0.02, layer='Conv2d'),
            dict(type=ConstantInit, layer='LayerNorm', val=1.0, bias=0.0)
        ]),
    neck=dict(
        type=BEiTV2Neck,
        num_layers=2,
        early_layers=9,
        backbone_arch='base',
        drop_path_rate=drop_path_rate,
        layer_scale_init_value=layer_scale_init_value,
    ),
    head=dict(
        type=BEiTV2Head,
        embed_dims=768,
        num_embed=8192,
        loss=dict(type=CrossEntropyLoss)),
    target_generator=dict(
        type=VQKD,
        encoder_config=vqkd_encoder,
        init_cfg=dict(
            type=PretrainedInit,
            checkpoint=  # noqa
            'https://download.openmmlab.com/mmselfsup/1.x/target_generator_ckpt/vqkd_encoder.pth'  # noqa
        )))

# optimizer wrapper
optim_wrapper = dict(
    type=AmpOptimWrapper,
    loss_scale='dynamic',
    # betas: (0.9, 0.98) for 300 epochs and (0.9, 0.999) for 1600 epochs.
    optimizer=dict(
        type=AdamW, lr=1.5e-3, betas=(0.9, 0.999), weight_decay=0.05),
    clip_grad=dict(max_norm=3.0),
    paramwise_cfg=dict(
        custom_keys={
            # the following configurations are designed for BEiT
            '.ln': dict(decay_mult=0.0),
            '.bias': dict(decay_mult=0.0),
            'q_bias': dict(decay_mult=0.0),
            'v_bias': dict(decay_mult=0.0),
            '.cls_token': dict(decay_mult=0.0),
            '.pos_embed': dict(decay_mult=0.0),
            '.gamma': dict(decay_mult=0.0),
        }))

# learning rate scheduler
param_scheduler = [
    dict(
        type=LinearLR,
        start_factor=1e-4,
        by_epoch=True,
        begin=0,
        end=10,
        convert_to_iter_based=True),
    dict(
        type=CosineAnnealingLR,
        eta_min=1e-5,
        by_epoch=True,
        begin=10,
        end=1600,
        convert_to_iter_based=True)
]

# runtime settings
train_cfg = dict(type=EpochBasedTrainLoop, max_epochs=1600)
default_hooks = dict(
    # only keeps the latest 3 checkpoints
    checkpoint=dict(type=CheckpointHook, interval=1, max_keep_ckpts=3))

randomness = dict(seed=0, diff_rank_seed=True)

find_unused_parameters = True

# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)