File size: 11,473 Bytes
ef818ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import pandas as pd
import gradio as gr
import os
from gradio_rangeslider import RangeSlider

from src.filter_utils import filter, filter_cols

# Main Leaderboard containing everything
text_leaderboard = pd.read_csv(os.path.join('assets', 'merged_data.csv'))
text_leaderboard = text_leaderboard.sort_values(by='Clemscore', ascending=False)  

open_weight_df = text_leaderboard[text_leaderboard['Open Weight'] == True]
if not open_weight_df.empty:  # Check if filtered df is non-empty
    max_parameter_size = open_weight_df['Parameters (B)'].max()

# Short leaderboard containing fixed columns
short_leaderboard = filter_cols(text_leaderboard)

## Extract data
langs = []
licenses = []
ip_prices = []
op_prices = []
latencies = []
parameters = []
contexts = []
dates = []

for i in range(len(text_leaderboard)):
    lang_splits = text_leaderboard.iloc[i]['Languages'].split(',')
    lang_splits = [s.strip() for s in lang_splits]
    langs += lang_splits
    license_name = text_leaderboard.iloc[i]['License Name']

    licenses.append(license_name)
    ip_prices.append(text_leaderboard.iloc[i]['Input $/1M tokens'])
    op_prices.append(text_leaderboard.iloc[i]['Output $/1M tokens'])
    latencies.append(text_leaderboard.iloc[i]['Latency (s)'])
    parameters.append(text_leaderboard.iloc[i]['Parameters (B)'])
    contexts.append(text_leaderboard.iloc[i]['Context Size (k)'])
    dates.append(text_leaderboard.iloc[i]['Release Date'])


langs = list(set(langs))
langs.sort()

licenses = list(set(licenses))
licenses.sort()

max_input_price = max(ip_prices)
max_output_price = max(op_prices)
max_latency = max(latencies)

min_parameters = 0 if pd.isna(min(parameters)) else min(parameters)
max_parameter = max_parameter_size
parameter_step = 1
print(f"MIN {min_parameters}, MAX {max_parameter}")

min_context = min(contexts)
max_context = max(contexts)
context_step = 8

min_date = min(dates)
max_date = max(dates)

TITLE = """<h1 align="center" id="space-title"> LLM Calculator βš–οΈβš‘ πŸ“πŸ’°</h1>"""
CSS = """
#double-slider-1 {height: 100px}
#double-slider-2 {height: 100px}
#double-slider-3 {height: 100px}
#double-slider-4 {height: 100px}
"""

llm_calc_app = gr.Blocks(css=CSS)
with llm_calc_app:

    gr.HTML(TITLE)

    ##################################################

    with gr.Row():

        #####################################
        # First Column
        ####################################
        ## Language Select
        with gr.Column():

            with gr.Row():
                lang_dropdown = gr.Dropdown(
                    choices=langs,
                    value=[],
                    multiselect=True,
                    label="Select Languages πŸ—£οΈ"
                )

            with gr.Row():
                start_date = gr.DateTime(
                    value=min_date,
                    type="string",
                    label="Release Date Range πŸ“… - Start Date"
                )

                end_date = gr.DateTime(
                    value=max_date,
                    type="string",
                    label="End Date"
                )

            # Multiodality Select
            with gr.Row():
                multimodal_checkbox = gr.CheckboxGroup(
                    choices=['Image', 'Multi-Image', 'Audio', 'Video'],
                    value=[],
                    label="Select Additional Modalities πŸ“·πŸŽ§πŸŽ¬",
                )

            # Open/Commercial Selection
            with gr.Row():
                open_weight_checkbox = gr.CheckboxGroup(
                    choices=['Open', 'Commercial'],
                    value=['Open', 'Commercial'],
                    label="Filter by Model Type πŸ”“ πŸ’Ό",
                )    

            # License selection
            with gr.Row():
                license_checkbox = gr.CheckboxGroup(
                    choices=licenses,
                    value=licenses,
                    label="License Type πŸ›‘οΈ",
                )    
        
        #############################################################
        # Second Column
        #############################################################
        with gr.Column():

            ####### LOG SLIDER 1 ###########
            with gr.Row():
                parameter_slider = RangeSlider(
                    minimum=0, 
                    maximum=max_parameter, 
                    label=f"Select Parameter Range πŸ” {int(min_parameters)}B - {int(max_parameter)}B+",
                    elem_id="double-slider-1",
                    step=parameter_step
                )

                
            ########### LOG SLIDER 2 ################

            with gr.Row():
                context_slider = RangeSlider(
                    minimum=0, 
                    maximum=max_context, 
                    label="Select Context Range (k) πŸ“",
                    elem_id="double-slider-2",
                    step=context_step
                )

            ############# PRICE SLIDER 1 ###############
            with gr.Row():
                input_pricing_slider = RangeSlider(
                    minimum=0, 
                    maximum=max_input_price, 
                    value=(0, max_input_price), 
                    label="Select Price range πŸ’²/1M input tokens",
                    elem_id="double-slider-3"
                )
            
            ############### PRICE SLIDER 2 ###############
            with gr.Row():
                output_pricing_slider = RangeSlider(
                    minimum=0, 
                    maximum=max_output_price, 
                    value=(0, max_output_price), 
                    label="Select Price range πŸ’²/1M output tokens",
                    elem_id="double-slider-4"
                )
       

    with gr.Row():
        """
        Main Leaderboard Row
        """

        leaderboard_table = gr.Dataframe(
                                value=short_leaderboard,
                                elem_id="text-leaderboard-table",
                                interactive=False,
                                visible=True,
                                datatype=['html', 'number', 'number', 'date', 'number', 'number', 'number', 'number', 'html']
                            )

        
        dummy_leaderboard_table = gr.Dataframe(
                                value=text_leaderboard,
                                elem_id="dummy-leaderboard-table",
                                interactive=False,
                                visible=False
                            )
        
        lang_dropdown.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],   
            queue=True
        )

        parameter_slider.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        input_pricing_slider.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        output_pricing_slider.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        multimodal_checkbox.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        open_weight_checkbox.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        context_slider.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        start_date.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        end_date.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        license_checkbox.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

    llm_calc_app.load()
llm_calc_app.queue()
llm_calc_app.launch()



"""
model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date,
parameters_estimated,parameters_actual,

open_weight,context, 

additional_prices_context_caching,
additional_prices_context_storage,
additional_prices_image_input,additional_prices_image_output,additional_prices_video_input,additional_prices_video_output,additional_prices_audio_input,additional_prices_audio_output,clemscore_v1.6.5_multimodal,clemscore_v1.6.5_ascii,clemscore_v1.6,latency_v1.6,latency_v1.6.5_multimodal,latency_v1.6.5_ascii,

average_clemscore,average_latency,parameters

Final list

model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date, open_weight,context, average_clemscore,average_latency,parameters


Filter
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
licence_name+licence_url, languages, release_date, open_weight

RR
model_name, input_price, output_price,
source, release_date

"""