Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- README.md +5 -5
- app.py +330 -0
- assets/merged_data.csv +71 -0
- assets/pricing.json +212 -0
- assets/text_content.py +53 -0
- prepare_path.sh +2 -0
- requirements.txt +5 -0
- src/collect_data.py +152 -0
- src/filter_utils.py +109 -0
- src/process_data.py +163 -0
- tempapp.py +33 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
1 |
---
|
2 |
+
title: LLMCalc
|
3 |
+
emoji: π
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
from gradio_rangeslider import RangeSlider
|
5 |
+
|
6 |
+
from src.filter_utils import filter, filter_cols
|
7 |
+
|
8 |
+
# Main Leaderboard containing everything
|
9 |
+
text_leaderboard = pd.read_csv(os.path.join('assets', 'merged_data.csv'))
|
10 |
+
text_leaderboard = text_leaderboard.sort_values(by='Clemscore', ascending=False)
|
11 |
+
|
12 |
+
open_weight_df = text_leaderboard[text_leaderboard['Open Weight'] == True]
|
13 |
+
if not open_weight_df.empty: # Check if filtered df is non-empty
|
14 |
+
max_parameter_size = open_weight_df['Parameters (B)'].max()
|
15 |
+
|
16 |
+
# Short leaderboard containing fixed columns
|
17 |
+
short_leaderboard = filter_cols(text_leaderboard)
|
18 |
+
|
19 |
+
## Extract data
|
20 |
+
langs = []
|
21 |
+
licenses = []
|
22 |
+
ip_prices = []
|
23 |
+
op_prices = []
|
24 |
+
latencies = []
|
25 |
+
parameters = []
|
26 |
+
contexts = []
|
27 |
+
dates = []
|
28 |
+
|
29 |
+
for i in range(len(text_leaderboard)):
|
30 |
+
lang_splits = text_leaderboard.iloc[i]['Languages'].split(',')
|
31 |
+
lang_splits = [s.strip() for s in lang_splits]
|
32 |
+
langs += lang_splits
|
33 |
+
license_name = text_leaderboard.iloc[i]['License Name']
|
34 |
+
|
35 |
+
licenses.append(license_name)
|
36 |
+
ip_prices.append(text_leaderboard.iloc[i]['Input $/1M tokens'])
|
37 |
+
op_prices.append(text_leaderboard.iloc[i]['Output $/1M tokens'])
|
38 |
+
latencies.append(text_leaderboard.iloc[i]['Latency (s)'])
|
39 |
+
parameters.append(text_leaderboard.iloc[i]['Parameters (B)'])
|
40 |
+
contexts.append(text_leaderboard.iloc[i]['Context Size (k)'])
|
41 |
+
dates.append(text_leaderboard.iloc[i]['Release Date'])
|
42 |
+
|
43 |
+
|
44 |
+
langs = list(set(langs))
|
45 |
+
langs.sort()
|
46 |
+
|
47 |
+
licenses = list(set(licenses))
|
48 |
+
licenses.sort()
|
49 |
+
|
50 |
+
max_input_price = max(ip_prices)
|
51 |
+
max_output_price = max(op_prices)
|
52 |
+
max_latency = max(latencies)
|
53 |
+
|
54 |
+
min_parameters = 0 if pd.isna(min(parameters)) else min(parameters)
|
55 |
+
max_parameter = max_parameter_size
|
56 |
+
parameter_step = 1
|
57 |
+
print(f"MIN {min_parameters}, MAX {max_parameter}")
|
58 |
+
|
59 |
+
min_context = min(contexts)
|
60 |
+
max_context = max(contexts)
|
61 |
+
context_step = 8
|
62 |
+
|
63 |
+
min_date = min(dates)
|
64 |
+
max_date = max(dates)
|
65 |
+
|
66 |
+
TITLE = """<h1 align="center" id="space-title"> LLM Calculator βοΈβ‘ ππ°</h1>"""
|
67 |
+
CSS = """
|
68 |
+
#double-slider-1 {height: 100px}
|
69 |
+
#double-slider-2 {height: 100px}
|
70 |
+
#double-slider-3 {height: 100px}
|
71 |
+
#double-slider-4 {height: 100px}
|
72 |
+
"""
|
73 |
+
|
74 |
+
llm_calc_app = gr.Blocks(css=CSS)
|
75 |
+
with llm_calc_app:
|
76 |
+
|
77 |
+
gr.HTML(TITLE)
|
78 |
+
|
79 |
+
##################################################
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
|
83 |
+
#####################################
|
84 |
+
# First Column
|
85 |
+
####################################
|
86 |
+
## Language Select
|
87 |
+
with gr.Column():
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
lang_dropdown = gr.Dropdown(
|
91 |
+
choices=langs,
|
92 |
+
value=[],
|
93 |
+
multiselect=True,
|
94 |
+
label="Select Languages π£οΈ"
|
95 |
+
)
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
start_date = gr.DateTime(
|
99 |
+
value=min_date,
|
100 |
+
type="string",
|
101 |
+
label="Release Date Range π
- Start Date"
|
102 |
+
)
|
103 |
+
|
104 |
+
end_date = gr.DateTime(
|
105 |
+
value=max_date,
|
106 |
+
type="string",
|
107 |
+
label="End Date"
|
108 |
+
)
|
109 |
+
|
110 |
+
# Multiodality Select
|
111 |
+
with gr.Row():
|
112 |
+
multimodal_checkbox = gr.CheckboxGroup(
|
113 |
+
choices=['Image', 'Multi-Image', 'Audio', 'Video'],
|
114 |
+
value=[],
|
115 |
+
label="Select Additional Modalities π·π§π¬",
|
116 |
+
)
|
117 |
+
|
118 |
+
# Open/Commercial Selection
|
119 |
+
with gr.Row():
|
120 |
+
open_weight_checkbox = gr.CheckboxGroup(
|
121 |
+
choices=['Open', 'Commercial'],
|
122 |
+
value=['Open', 'Commercial'],
|
123 |
+
label="Filter by Model Type π πΌ",
|
124 |
+
)
|
125 |
+
|
126 |
+
# License selection
|
127 |
+
with gr.Row():
|
128 |
+
license_checkbox = gr.CheckboxGroup(
|
129 |
+
choices=licenses,
|
130 |
+
value=licenses,
|
131 |
+
label="License Type π‘οΈ",
|
132 |
+
)
|
133 |
+
|
134 |
+
#############################################################
|
135 |
+
# Second Column
|
136 |
+
#############################################################
|
137 |
+
with gr.Column():
|
138 |
+
|
139 |
+
####### LOG SLIDER 1 ###########
|
140 |
+
with gr.Row():
|
141 |
+
parameter_slider = RangeSlider(
|
142 |
+
minimum=0,
|
143 |
+
maximum=max_parameter,
|
144 |
+
label=f"Select Parameter Range π {int(min_parameters)}B - {int(max_parameter)}B+",
|
145 |
+
elem_id="double-slider-1",
|
146 |
+
step=parameter_step
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
########### LOG SLIDER 2 ################
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
context_slider = RangeSlider(
|
154 |
+
minimum=0,
|
155 |
+
maximum=max_context,
|
156 |
+
label="Select Context Range (k) π",
|
157 |
+
elem_id="double-slider-2",
|
158 |
+
step=context_step
|
159 |
+
)
|
160 |
+
|
161 |
+
############# PRICE SLIDER 1 ###############
|
162 |
+
with gr.Row():
|
163 |
+
input_pricing_slider = RangeSlider(
|
164 |
+
minimum=0,
|
165 |
+
maximum=max_input_price,
|
166 |
+
value=(0, max_input_price),
|
167 |
+
label="Select Price range π²/1M input tokens",
|
168 |
+
elem_id="double-slider-3"
|
169 |
+
)
|
170 |
+
|
171 |
+
############### PRICE SLIDER 2 ###############
|
172 |
+
with gr.Row():
|
173 |
+
output_pricing_slider = RangeSlider(
|
174 |
+
minimum=0,
|
175 |
+
maximum=max_output_price,
|
176 |
+
value=(0, max_output_price),
|
177 |
+
label="Select Price range π²/1M output tokens",
|
178 |
+
elem_id="double-slider-4"
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
+
with gr.Row():
|
183 |
+
"""
|
184 |
+
Main Leaderboard Row
|
185 |
+
"""
|
186 |
+
|
187 |
+
leaderboard_table = gr.Dataframe(
|
188 |
+
value=short_leaderboard,
|
189 |
+
elem_id="text-leaderboard-table",
|
190 |
+
interactive=False,
|
191 |
+
visible=True,
|
192 |
+
datatype=['html', 'number', 'number', 'date', 'number', 'number', 'number', 'number', 'html']
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
dummy_leaderboard_table = gr.Dataframe(
|
197 |
+
value=text_leaderboard,
|
198 |
+
elem_id="dummy-leaderboard-table",
|
199 |
+
interactive=False,
|
200 |
+
visible=False
|
201 |
+
)
|
202 |
+
|
203 |
+
lang_dropdown.change(
|
204 |
+
filter,
|
205 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
206 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
207 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
208 |
+
[leaderboard_table],
|
209 |
+
queue=True
|
210 |
+
)
|
211 |
+
|
212 |
+
parameter_slider.change(
|
213 |
+
filter,
|
214 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
215 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
216 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
217 |
+
[leaderboard_table],
|
218 |
+
queue=True
|
219 |
+
)
|
220 |
+
|
221 |
+
input_pricing_slider.change(
|
222 |
+
filter,
|
223 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
224 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
225 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
226 |
+
[leaderboard_table],
|
227 |
+
queue=True
|
228 |
+
)
|
229 |
+
|
230 |
+
output_pricing_slider.change(
|
231 |
+
filter,
|
232 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
233 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
234 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
235 |
+
[leaderboard_table],
|
236 |
+
queue=True
|
237 |
+
)
|
238 |
+
|
239 |
+
multimodal_checkbox.change(
|
240 |
+
filter,
|
241 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
242 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
243 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
244 |
+
[leaderboard_table],
|
245 |
+
queue=True
|
246 |
+
)
|
247 |
+
|
248 |
+
open_weight_checkbox.change(
|
249 |
+
filter,
|
250 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
251 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
252 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
253 |
+
[leaderboard_table],
|
254 |
+
queue=True
|
255 |
+
)
|
256 |
+
|
257 |
+
context_slider.change(
|
258 |
+
filter,
|
259 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
260 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
261 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
262 |
+
[leaderboard_table],
|
263 |
+
queue=True
|
264 |
+
)
|
265 |
+
|
266 |
+
start_date.change(
|
267 |
+
filter,
|
268 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
269 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
270 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
271 |
+
[leaderboard_table],
|
272 |
+
queue=True
|
273 |
+
)
|
274 |
+
|
275 |
+
end_date.change(
|
276 |
+
filter,
|
277 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
278 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
279 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
280 |
+
[leaderboard_table],
|
281 |
+
queue=True
|
282 |
+
)
|
283 |
+
|
284 |
+
license_checkbox.change(
|
285 |
+
filter,
|
286 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
287 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
288 |
+
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
|
289 |
+
[leaderboard_table],
|
290 |
+
queue=True
|
291 |
+
)
|
292 |
+
|
293 |
+
llm_calc_app.load()
|
294 |
+
llm_calc_app.queue()
|
295 |
+
llm_calc_app.launch()
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
"""
|
300 |
+
model_name, input_price, output_price,
|
301 |
+
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
|
302 |
+
source,licence_name,licence_url,languages,release_date,
|
303 |
+
parameters_estimated,parameters_actual,
|
304 |
+
|
305 |
+
open_weight,context,
|
306 |
+
|
307 |
+
additional_prices_context_caching,
|
308 |
+
additional_prices_context_storage,
|
309 |
+
additional_prices_image_input,additional_prices_image_output,additional_prices_video_input,additional_prices_video_output,additional_prices_audio_input,additional_prices_audio_output,clemscore_v1.6.5_multimodal,clemscore_v1.6.5_ascii,clemscore_v1.6,latency_v1.6,latency_v1.6.5_multimodal,latency_v1.6.5_ascii,
|
310 |
+
|
311 |
+
average_clemscore,average_latency,parameters
|
312 |
+
|
313 |
+
Final list
|
314 |
+
|
315 |
+
model_name, input_price, output_price,
|
316 |
+
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
|
317 |
+
source,licence_name,licence_url,languages,release_date, open_weight,context, average_clemscore,average_latency,parameters
|
318 |
+
|
319 |
+
|
320 |
+
Filter
|
321 |
+
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
|
322 |
+
licence_name+licence_url, languages, release_date, open_weight
|
323 |
+
|
324 |
+
RR
|
325 |
+
model_name, input_price, output_price,
|
326 |
+
source, release_date
|
327 |
+
|
328 |
+
"""
|
329 |
+
|
330 |
+
|
assets/merged_data.csv
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model Name,Latency (s),Clemscore,Parameters (B),Release Date,Open Weight,Languages,Context Size (k),License Name,License URL,Single Image,Multiple Images,Audio,Video,Input $/1M tokens,Output $/1M tokens,License,Temp Date
|
2 |
+
o1-preview-2024-09-12,7.368572853601854,73.63,,2024-09-12,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,15.0,60.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-09-12
|
3 |
+
gpt-4-1106-vision-preview,4.712557435752081,73.55,,2023-11-06,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,10.0,30.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-11-06
|
4 |
+
claude-3-5-sonnet-20240620,2.0645066812060726,68.925,,2024-06-20,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,3.0,15.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-06-20
|
5 |
+
gpt-4o-2024-08-06,1.951333607454077,63.875,,2024-08-06,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,3.75,15.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-08-06
|
6 |
+
gpt-4o-2024-05-13,5.022646224034688,58.95,,2024-05-13,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,5.0,15.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-05-13
|
7 |
+
gpt-4-turbo-2024-04-09,,58.3,,2024-04-09,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,10.0,30.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-04-09
|
8 |
+
claude-3-opus-20240229,3.916101346449241,55.29,,2024-02-29,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,15.0,75.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-02-29
|
9 |
+
gpt-4-0125-preview,1.0418927523113648,52.5,,2024-01-25,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,10.0,30.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-01-25
|
10 |
+
Meta-Llama-3.1-405B-Instruct-Turbo,0.7886103946545819,52.11,405.0,2024-07-23,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-23
|
11 |
+
gpt-4-1106-preview,0.7767265743542736,51.99,,2023-11-06,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-11-06
|
12 |
+
gpt-4-0613,0.648441146582876,51.09,,2023-06-13,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-06-13
|
13 |
+
gpt-4o-mini-2024-07-18,2.08647007916325,46.55,,2024-07-18,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.3,1.2,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-18
|
14 |
+
Mistral-Large-Instruct-2407,1.2444667688634192,45.39,123.0,2024-07-24,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-24
|
15 |
+
Meta-Llama-3.1-70B-Instruct,0.8105055275945292,38.83,70.0,2024-07-23,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-23
|
16 |
+
InternVL2-26B,4.239272214812438,37.45,26.0,2024-07-15,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-15
|
17 |
+
InternVL2-Llama3-76B,10.660117299385416,33.84,76.0,2024-07-15,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-15
|
18 |
+
claude-2.1,1.6836316221022516,32.5,,2023-11-21,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,8.0,24.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-11-21
|
19 |
+
InternVL2-40B,6.267102418391484,32.23,40.0,2024-07-15,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-15
|
20 |
+
claude-3-sonnet-20240229,1.4194860128225952,30.53,,2024-02-29,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,3.0,15.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-02-29
|
21 |
+
Qwen1.5-72B-Chat,12.689668927658191,30.37,72.0,2024-01-30,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-01-30
|
22 |
+
Qwen2-72B-Instruct,0.9480584860151366,30.03,72.0,2024-05-28,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-05-28
|
23 |
+
idefics-80b-instruct,6.8089303915502315,29.55,80.0,2023-07-24,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-07-24
|
24 |
+
Pixtral-12B-2409,1.4976731684122335,28.64,12.0,2024-09-11,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-09-11
|
25 |
+
mistral-large-2402,0.3967416598893965,28.17,123.0,2024-02-01,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-02-01
|
26 |
+
Qwen2.5-Coder-32B-Instruct,0.8337066960552915,27.57,32.0,2024-11-06,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-11-06
|
27 |
+
gemma-2-9b-it,0.3692553324432573,27.34,9.0,2024-06-24,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-06-24
|
28 |
+
gpt-3.5-turbo-0125,,27.22,,2024-01-25,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.5,1.5,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-01-25
|
29 |
+
command-r-plus,0.3104016019283746,24.94,104.0,2024-04-01,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-04-01
|
30 |
+
openchat_3.5,0.3172876868462049,23.64,7.0,2023-10-30,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-10-30
|
31 |
+
InternVL2-8B,1.948600327851168,23.17,8.0,2024-07-15,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-15
|
32 |
+
claude-3-haiku-20240307,0.8695497396191068,22.49,,2024-03-07,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.25,1.25,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-03-07
|
33 |
+
sheep-duck-llama-2-70b-v1.1,5.524607914346901,21.5,70.0,2023-09-27,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-09-27
|
34 |
+
Meta-Llama-3.1-8B-Instruct,0.206305748406081,18.36,8.0,2024-07-23,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-23
|
35 |
+
openchat-3.5-1210,0.280498276910299,18.22,7.0,2023-12-10,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-12-10
|
36 |
+
Idefics3-8B-Llama3,2.7247848158020003,17.52,8.0,2024-08-05,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-08-05
|
37 |
+
WizardLM-70b-v1.0,3.924977203883497,17.4,70.0,2023-08-09,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-08-09
|
38 |
+
openchat-3.5-0106,0.2920951450556648,17.1,7.0,2024-01-06,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-01-06
|
39 |
+
internlm-xcomposer2d5-7b,8.438096179522176,16.95,7.0,2024-07-02,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-02
|
40 |
+
mistral-medium-2312,3.3167870515212083,16.43,,2023-12-01,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-12-01
|
41 |
+
Phi-3.5-vision-instruct,1.540488050470713,15.64,4.0,2024-08-17,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-08-17
|
42 |
+
codegemma-7b-it,0.3048974050865229,15.3,7.0,2024-04-09,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-04-09
|
43 |
+
CodeLlama-34b-Instruct-hf,3.851887315425933,14.35,34.0,2023-08-24,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-08-24
|
44 |
+
command-r,0.1883241491458606,14.15,35.0,2024-03-01,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-03-01
|
45 |
+
gemma-1.1-7b-it,0.1782953878345496,14.14,7.0,2024-03-26,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-03-26
|
46 |
+
SUS-Chat-34B,2.27951476106911,14.11,34.0,2023-11-29,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-11-29
|
47 |
+
aya-23-35B,0.5755088395104287,13.35,35.0,2024-05-19,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-05-19
|
48 |
+
Mixtral-8x22B-Instruct-v0.1,1.0759354563573875,12.69,141.0,2024-04-17,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-04-17
|
49 |
+
tulu-2-dpo-70b,7.848597339328536,12.62,70.0,2023-11-12,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-11-12
|
50 |
+
idefics-9b-instruct,4.156911970172687,12.29,9.0,2023-07-24,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-07-24
|
51 |
+
aya-23-8B,0.4818848185613353,11.72,8.0,2024-05-19,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-05-19
|
52 |
+
WizardLM-13b-v1.2,3.5654367625763,11.48,13.0,2023-07-25,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-07-25
|
53 |
+
vicuna-33b-v1.3,0.8235025152162306,11.27,33.0,2023-06-21,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-06-21
|
54 |
+
Llama-3.1-Nemotron-70B-Instruct-HF,1.105406813859938,10.16,70.0,2024-10-12,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-10-12
|
55 |
+
Yi-34B-Chat,1.2871676207135438,8.27,34.0,2023-11-22,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-11-22
|
56 |
+
Mixtral-8x7B-Instruct-v0.1,0.9392967660636314,8.17,46.7,2023-12-11,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-12-11
|
57 |
+
Mixtral-8x7B-Instruct-v0.1,0.9392967660636314,8.17,46.7,2023-12-11,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-12-11
|
58 |
+
Mistral-7B-Instruct-v0.1,0.2828647550771728,8.01,7.0,2023-09-27,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-09-27
|
59 |
+
vicuna-13b-v1.5,1.4753938719676598,7.01,13.0,2023-07-29,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-07-29
|
60 |
+
Starling-LM-7B-beta,1.365002297029703,6.56,7.0,2024-03-19,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-03-19
|
61 |
+
Phi-3-mini-128k-instruct,0.6615315832127354,6.33,3.8,2024-04-22,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-04-22
|
62 |
+
Qwen2-7B-Instruct,0.3589407217948714,6.18,7.0,2024-06-04,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-06-04
|
63 |
+
salamandra-7b-instruct,0.3894831193548387,6.04,7.0,2024-09-30,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-09-30
|
64 |
+
sheep-duck-llama-2-13b,2.9462099794520573,5.39,13.0,2023-10-04,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-10-04
|
65 |
+
dolphin-vision-72b,10.190958003739729,4.65,72.0,2024-06-28,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-06-28
|
66 |
+
gemma-2-27b-it,0.9922771009345794,3.51,27.0,2024-06-24,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-06-24
|
67 |
+
gemma-1.1-2b-it,0.1192569946127946,2.91,2.0,2024-03-26,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-03-26
|
68 |
+
gemma-2-2b-it,0.3139821517919889,2.67,2.0,2024-07-16,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-07-16
|
69 |
+
Qwen1.5-7B-Chat,0.3898907690883847,2.58,7.0,2024-01-30,True,"Chinese, English",,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-01-30
|
70 |
+
gemma-7b-it,0.6112263564356434,1.82,7.0,2024-02-21,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-02-21
|
71 |
+
llama-2-70b-chat-hf,4.724659620079607,0.81,70.0,2023-07-18,True,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,0.0,0.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-07-18
|
assets/pricing.json
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"model_id": "gpt-4-1106-vision-preview",
|
4 |
+
"input": "10$",
|
5 |
+
"output": "30$"
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"model_id": "gpt-4o-2024-05-13",
|
9 |
+
"input": "5$",
|
10 |
+
"output": "15$"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"model_id": "gpt-4o-2024-08-06",
|
14 |
+
"input": "3.750$",
|
15 |
+
"output": "15$"
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"model_id": "gpt-4o-mini-2024-07-18",
|
19 |
+
"input": "0.300$",
|
20 |
+
"output": "1.200$"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"model_id": "gpt-4-turbo-2024-04-09",
|
24 |
+
"input": "10$",
|
25 |
+
"output": "30$"
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"model_id": "gpt-4-1106-preview",
|
29 |
+
"input": "",
|
30 |
+
"output": ""
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"model_id": "gpt-4-0125-preview",
|
34 |
+
"input": "10$",
|
35 |
+
"output": "30$"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"model_id": "o1-preview-2024-09-12",
|
39 |
+
"input": "15$",
|
40 |
+
"output": "60$"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"model_id": "o1-mini-2024-09-12",
|
44 |
+
"input": "3$",
|
45 |
+
"output": "12$"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"model_id": "gpt-3.5-turbo-0125",
|
49 |
+
"input": "0.5$",
|
50 |
+
"output": "1.5$"
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"model_id": "gpt-4-0613",
|
54 |
+
"input": "",
|
55 |
+
"output": ""
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"model_id": "gpt-4-0314",
|
59 |
+
"input": "",
|
60 |
+
"output": ""
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"model_id": "gpt-3.5-turbo-1106",
|
64 |
+
"input": "1$",
|
65 |
+
"output": "2$"
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"model_id": "gpt-3.5-turbo-0613",
|
69 |
+
"input": "1.5$",
|
70 |
+
"output": "2$"
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"model_id": "command",
|
74 |
+
"input": "",
|
75 |
+
"output": ""
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"model_id": "command-light",
|
79 |
+
"input": "",
|
80 |
+
"output": ""
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"model_id": "claude-v1.3",
|
84 |
+
"input": "",
|
85 |
+
"output": ""
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"model_id": "claude-v1.3-100k",
|
89 |
+
"input": "",
|
90 |
+
"output": ""
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"model_id": "claude-instant-1.2",
|
94 |
+
"input": "",
|
95 |
+
"output": ""
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"model_id": "claude-2",
|
99 |
+
"input": "8$",
|
100 |
+
"output": "24$"
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"model_id": "claude-2.1",
|
104 |
+
"input": "8$",
|
105 |
+
"output": "24$"
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"model_id": "claude-3-opus-20240229",
|
109 |
+
"input": "15$",
|
110 |
+
"output": "75$"
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"model_id": "claude-3-sonnet-20240229",
|
114 |
+
"input": "3$",
|
115 |
+
"output": "15$"
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"model_id": "claude-3-haiku-20240307",
|
119 |
+
"input": "0.25$",
|
120 |
+
"output": "1.25$"
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"model_id": "claude-3-5-sonnet-20240620",
|
124 |
+
"input": "3$",
|
125 |
+
"output": "15$"
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"model_id": "claude-3-5-haiku-20241022",
|
129 |
+
"input": "0.8$",
|
130 |
+
"output": "4$"
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"model_id": "claude-3-5-sonnet-20241022",
|
134 |
+
"input": "3$",
|
135 |
+
"output": "15$"
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"model_id": "gemini-1.0-pro-001",
|
139 |
+
"input": "0.5$",
|
140 |
+
"output": "1.5$"
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"model_id": "gemini-1.0-pro-002",
|
144 |
+
"input": "0.5$",
|
145 |
+
"output": "1.5$"
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"model_id": "gemini-1.0-pro-vision-latest",
|
149 |
+
"input": "0.5$",
|
150 |
+
"output": "1.5$"
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"model_id": "gemini-1.5-flash-001",
|
154 |
+
"input": "0.075$",
|
155 |
+
"output": "0.3$"
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"model_id": "gemini-1.5-pro-001",
|
159 |
+
"input": "1.25$",
|
160 |
+
"output": "5$"
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"model_id": "gemini-1.5-pro-002",
|
164 |
+
"input": "1.25$",
|
165 |
+
"output": "5$"
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"model_id": "gemini-1.5-flash-002",
|
169 |
+
"input": "0.075$",
|
170 |
+
"output": "0.3$"
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"model_id": "gemini-1.5-flash-8b-001",
|
174 |
+
"input": "0.0375$",
|
175 |
+
"output": "0.15$"
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"model_id": "gemini-2.0-flash-exp",
|
179 |
+
"input": "0$",
|
180 |
+
"output": "0$"
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"model_id": "luminous-supreme-control",
|
184 |
+
"input": "",
|
185 |
+
"output": ""
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"model_id": "luminous-supreme",
|
189 |
+
"input": "",
|
190 |
+
"output": ""
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"model_id": "luminous-extended",
|
194 |
+
"input": "",
|
195 |
+
"output": ""
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"model_id": "luminous-base",
|
199 |
+
"input": "",
|
200 |
+
"output": ""
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"model_id": "luminous-base",
|
204 |
+
"input": "",
|
205 |
+
"output": ""
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"model_id": "luminous-base",
|
209 |
+
"input": "",
|
210 |
+
"output": ""
|
211 |
+
}
|
212 |
+
]
|
assets/text_content.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
CLEMBENCH_RUNS_REPO = "https://raw.githubusercontent.com/clembench/clembench-runs/main/"
|
4 |
+
REGISTRY_URL = "https://raw.githubusercontent.com/clp-research/clembench/refs/heads/refactor_model_registry/backends/model_registry.json"
|
5 |
+
BENCHMARK_FILE = "benchmark_runs.json"
|
6 |
+
|
7 |
+
LATENCY_FOLDER = os.path.join("Addenda", "Latency")
|
8 |
+
RESULT_FILE = "results.csv"
|
9 |
+
LATENCY_SUFFIX = "_latency.csv"
|
10 |
+
|
11 |
+
LANG_MAPPING = {
|
12 |
+
'el': 'Greek',
|
13 |
+
'id': 'Indonesian',
|
14 |
+
'ko': 'Korean',
|
15 |
+
'sv': 'Swedish',
|
16 |
+
'de': 'German',
|
17 |
+
'lv': 'Latvian',
|
18 |
+
'am': 'Amharic',
|
19 |
+
'fi': 'Finnish',
|
20 |
+
'da': 'Danish',
|
21 |
+
'pt': 'Portuguese',
|
22 |
+
'sw': 'Swahili',
|
23 |
+
'es': 'Spanish',
|
24 |
+
'it': 'Italian',
|
25 |
+
'bn': 'Bengali',
|
26 |
+
'nl': 'Dutch',
|
27 |
+
'lt': 'Lithuanian',
|
28 |
+
'ro': 'Romanian',
|
29 |
+
'sl': 'Slovenian',
|
30 |
+
'hu': 'Hungarian',
|
31 |
+
'hr': 'Croatian',
|
32 |
+
'vi': 'Vietnamese',
|
33 |
+
'hi': 'Hindi',
|
34 |
+
'zh': 'Chinese',
|
35 |
+
'pl': 'Polish',
|
36 |
+
'ar': 'Arabic',
|
37 |
+
'cs': 'Czech',
|
38 |
+
'sk': 'Slovak',
|
39 |
+
'ja': 'Japanese',
|
40 |
+
'no': 'Norwegian',
|
41 |
+
'uk': 'Ukrainian',
|
42 |
+
'fr': 'French',
|
43 |
+
'et': 'Estonian',
|
44 |
+
'ru': 'Russian',
|
45 |
+
'th': 'Thai',
|
46 |
+
'bg': 'Bulgarian',
|
47 |
+
'tr': 'Turkish',
|
48 |
+
'ms': 'Malay',
|
49 |
+
'he': 'Hebrew',
|
50 |
+
'tl': 'Tagalog',
|
51 |
+
'sr': 'Serbian',
|
52 |
+
'en': 'English'
|
53 |
+
}
|
prepare_path.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#!/bash/bin
|
2 |
+
export PYTHONPATH=.:$PYTHONPATH
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
beautifulsoup4==4.12.3
|
2 |
+
pandas==2.2.3
|
3 |
+
gradio_rangeslider==0.0.7
|
4 |
+
gradio==4.44.1
|
5 |
+
langcodes==3.5.0
|
src/collect_data.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Collect data from the multiple sources and create a base datafranme for the LLMCalculator table
|
3 |
+
Latency - https://github.com/clembench/clembench-runs/tree/main/Addenda/Latency
|
4 |
+
Pricing - pricing.json
|
5 |
+
Model info - https://github.com/kushal-10/clembench/blob/feat/registry/backends/model_registry_updated.json
|
6 |
+
"""
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import json
|
10 |
+
import requests
|
11 |
+
from assets.text_content import CLEMBENCH_RUNS_REPO, REGISTRY_URL, BENCHMARK_FILE, LATENCY_FOLDER, RESULT_FILE, LATENCY_SUFFIX
|
12 |
+
import os
|
13 |
+
|
14 |
+
def validate_request(url: str, response) -> bool:
|
15 |
+
"""
|
16 |
+
Validate if an HTTP request was successful.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
url (str): The URL that was requested
|
20 |
+
response (requests.Response): The response object from the request
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
bool: True if request was successful (status code 200), False otherwise
|
24 |
+
"""
|
25 |
+
|
26 |
+
if response.status_code != 200:
|
27 |
+
print(f"Failed to read file - {url}. Status Code: {response.status_code}")
|
28 |
+
return False
|
29 |
+
return True
|
30 |
+
|
31 |
+
def fetch_benchmark_data(benchmark: str = "text", version_names: list = []) -> tuple:
|
32 |
+
"""
|
33 |
+
Fetch and parse benchmark results and latency data from CSV files.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
benchmark (str): Type of benchmark to fetch ('text' or 'multimodal')
|
37 |
+
version_names (list): List of version names to search through, sorted by latest first
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
tuple[pd.DataFrame, pd.DataFrame]: A tuple containing:
|
41 |
+
- results_df: DataFrame with benchmark results
|
42 |
+
- latency_df: DataFrame with latency measurements
|
43 |
+
Returns (None, None) if no matching version is found or requests fail
|
44 |
+
|
45 |
+
Raises:
|
46 |
+
requests.RequestException: If there's an error fetching the data
|
47 |
+
pd.errors.EmptyDataError: If CSV file is empty
|
48 |
+
pd.errors.ParserError: If CSV parsing fails
|
49 |
+
"""
|
50 |
+
for v in version_names:
|
51 |
+
# Check if version matches benchmark type
|
52 |
+
is_multimodal = 'multimodal' in v
|
53 |
+
if (benchmark == "multimodal") != is_multimodal:
|
54 |
+
continue
|
55 |
+
|
56 |
+
# Construct URLs
|
57 |
+
results_url = os.path.join(CLEMBENCH_RUNS_REPO, v, RESULT_FILE)
|
58 |
+
latency_url = os.path.join(CLEMBENCH_RUNS_REPO, LATENCY_FOLDER, v + LATENCY_SUFFIX)
|
59 |
+
|
60 |
+
try:
|
61 |
+
results = requests.get(results_url)
|
62 |
+
latency = requests.get(latency_url)
|
63 |
+
|
64 |
+
if validate_request(results_url, results) and validate_request(latency_url, latency):
|
65 |
+
# Convert the CSV content to pandas DataFrames
|
66 |
+
results_df = pd.read_csv(pd.io.common.StringIO(results.text))
|
67 |
+
latency_df = pd.read_csv(pd.io.common.StringIO(latency.text))
|
68 |
+
return results_df, latency_df
|
69 |
+
|
70 |
+
except requests.RequestException as e:
|
71 |
+
print(f"Error fetching data for version {v}: {e}")
|
72 |
+
except pd.errors.EmptyDataError:
|
73 |
+
print(f"Error: Empty CSV file found for version {v}")
|
74 |
+
except pd.errors.ParserError:
|
75 |
+
print(f"Error: Unable to parse CSV data for version {v}")
|
76 |
+
|
77 |
+
return None, None
|
78 |
+
|
79 |
+
def fetch_version_metadata() -> tuple:
|
80 |
+
"""
|
81 |
+
Fetch and process benchmark metadata from the Clembench GitHub repository.
|
82 |
+
|
83 |
+
The data is sourced from: https://github.com/clembench/clembench-runs
|
84 |
+
Configure the repository path in src/assets/text_content/CLEMBENCH_RUNS_REPO
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: A tuple containing:
|
88 |
+
- mm_result: Multimodal benchmark results
|
89 |
+
- mm_latency: Multimodal latency data
|
90 |
+
- text_result: Text benchmark results
|
91 |
+
- text_latency: Text latency data
|
92 |
+
Returns (None, None, None, None) if the request fails
|
93 |
+
"""
|
94 |
+
json_url = CLEMBENCH_RUNS_REPO + BENCHMARK_FILE
|
95 |
+
response = requests.get(json_url)
|
96 |
+
|
97 |
+
# Check if the JSON file request was successful
|
98 |
+
if not validate_request(json_url, response):
|
99 |
+
return None, None, None, None
|
100 |
+
|
101 |
+
json_data = response.json()
|
102 |
+
versions = json_data['versions']
|
103 |
+
|
104 |
+
# Sort the versions in benchmark by latest first
|
105 |
+
version_names = sorted(
|
106 |
+
[ver['version'] for ver in versions],
|
107 |
+
key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))),
|
108 |
+
reverse=True
|
109 |
+
)
|
110 |
+
|
111 |
+
# Latency is in seconds
|
112 |
+
mm_result, mm_latency = fetch_benchmark_data("multimodal", version_names)
|
113 |
+
text_result, text_latency = fetch_benchmark_data("text", version_names)
|
114 |
+
|
115 |
+
return mm_latency, mm_result, text_latency, text_result
|
116 |
+
|
117 |
+
def fetch_registry_data() -> dict:
|
118 |
+
"""
|
119 |
+
Fetch and parse model registry data from the Clembench registry URL.
|
120 |
+
|
121 |
+
The data is sourced from the model registry defined in REGISTRY_URL.
|
122 |
+
Contains information about various LLM models including their specifications
|
123 |
+
and capabilities.
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
dict: Dictionary containing model registry data.
|
127 |
+
Returns None if the request fails or the JSON is invalid.
|
128 |
+
|
129 |
+
Raises:
|
130 |
+
requests.RequestException: If there's an error fetching the data
|
131 |
+
json.JSONDecodeError: If the response cannot be parsed as JSON
|
132 |
+
"""
|
133 |
+
try:
|
134 |
+
response = requests.get(REGISTRY_URL)
|
135 |
+
if not validate_request(REGISTRY_URL, response):
|
136 |
+
return None
|
137 |
+
|
138 |
+
return response.json()
|
139 |
+
|
140 |
+
except requests.RequestException as e:
|
141 |
+
print(f"Error fetching registry data: {e}")
|
142 |
+
except json.JSONDecodeError as e:
|
143 |
+
print(f"Error parsing registry JSON: {e}")
|
144 |
+
|
145 |
+
return None
|
146 |
+
|
147 |
+
if __name__=="__main__":
|
148 |
+
fetch_version_metadata()
|
149 |
+
registry_data = fetch_registry_data()
|
150 |
+
print(registry_data[0])
|
151 |
+
|
152 |
+
|
src/filter_utils.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Utility functions for filtering the dataframe
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
def filter_cols(df):
|
6 |
+
|
7 |
+
df = df[[
|
8 |
+
'Model Name',
|
9 |
+
'Clemscore',
|
10 |
+
'Input $/1M tokens',
|
11 |
+
'Output $/1M tokens',
|
12 |
+
'Latency (s)',
|
13 |
+
'Context Size (k)',
|
14 |
+
'Parameters (B)',
|
15 |
+
'Release Date',
|
16 |
+
'License'
|
17 |
+
]]
|
18 |
+
|
19 |
+
return df
|
20 |
+
|
21 |
+
|
22 |
+
def filter(df, language_list, parameters, input_price, output_price, multimodal,
|
23 |
+
context, open_weight, start, end, license ):
|
24 |
+
|
25 |
+
|
26 |
+
if not df.empty: # Check if df is non-empty
|
27 |
+
df = df[df['Languages'].apply(lambda x: all(lang in x for lang in language_list))]
|
28 |
+
|
29 |
+
if not df.empty:
|
30 |
+
# Split dataframe by Open Weight
|
31 |
+
open_weight_true = df[df['Open Weight'] == True]
|
32 |
+
open_weight_false = df[df['Open Weight'] == False]
|
33 |
+
|
34 |
+
# Get max parameter size for open weight models
|
35 |
+
max_parameter_size = open_weight_true['Parameters (B)'].max() if not open_weight_true.empty else 0
|
36 |
+
|
37 |
+
# Filter only the open weight models based on parameters
|
38 |
+
if not open_weight_true.empty:
|
39 |
+
if parameters[1] >= max_parameter_size:
|
40 |
+
filtered_open = open_weight_true[
|
41 |
+
(open_weight_true['Parameters (B)'] >= parameters[0])
|
42 |
+
]
|
43 |
+
else:
|
44 |
+
filtered_open = open_weight_true[
|
45 |
+
(open_weight_true['Parameters (B)'] >= parameters[0]) &
|
46 |
+
(open_weight_true['Parameters (B)'] <= parameters[1])
|
47 |
+
]
|
48 |
+
|
49 |
+
# Combine filtered open weight models with unfiltered commercial models
|
50 |
+
df = pd.concat([filtered_open, open_weight_false])
|
51 |
+
|
52 |
+
if not df.empty: # Check if df is non-empty
|
53 |
+
df = df[(df['Input $/1M tokens'] >= input_price[0]) & (df['Input $/1M tokens'] <= input_price[1])]
|
54 |
+
|
55 |
+
if not df.empty: # Check if df is non-empty
|
56 |
+
df = df[(df['Output $/1M tokens'] >= output_price[0]) & (df['Output $/1M tokens'] <= output_price[1])]
|
57 |
+
|
58 |
+
|
59 |
+
print("Price")
|
60 |
+
print(df)
|
61 |
+
|
62 |
+
if not df.empty: # Check if df is non-empty
|
63 |
+
if "Image" in multimodal:
|
64 |
+
df = df[df['Image'] == True]
|
65 |
+
if "Multi-Image" in multimodal:
|
66 |
+
df = df[df['Multiple Image'] == True]
|
67 |
+
if "Audio" in multimodal:
|
68 |
+
df = df[df['Audio'] == True]
|
69 |
+
if "Video" in multimodal:
|
70 |
+
df = df[df['Video'] == True]
|
71 |
+
|
72 |
+
# if not df.empty: # Check if df is non-empty
|
73 |
+
# df = df[(df['Context Size (k)'] >= (context[0])) & (df['Context Size (k)'] <= (context[1]))]
|
74 |
+
|
75 |
+
|
76 |
+
print("Modality")
|
77 |
+
print(df)
|
78 |
+
|
79 |
+
if not df.empty: # Check if df is non-empty
|
80 |
+
if "Open" in open_weight and "Commercial" not in open_weight:
|
81 |
+
df = df[df['Open Weight'] == True]
|
82 |
+
elif "Commercial" in open_weight and "Open" not in open_weight:
|
83 |
+
df = df[df['Open Weight'] == False]
|
84 |
+
elif "Open" not in open_weight and "Commercial" not in open_weight:
|
85 |
+
# Return empty DataFrame with same columns
|
86 |
+
df = pd.DataFrame(columns=df.columns)
|
87 |
+
|
88 |
+
if not df.empty: # Check if df is non-empty
|
89 |
+
df = df[df['License Name'].apply(lambda x: any(lic in x for lic in license))]
|
90 |
+
|
91 |
+
# Convert 'Release Date' to int temporarily
|
92 |
+
if not df.empty: # Check if df is non-empty
|
93 |
+
df['Temp Date'] = pd.to_datetime(df['Temp Date']).astype(int) // 10**9 # Convert to seconds since epoch
|
94 |
+
|
95 |
+
# Convert start and end to int (seconds since epoch)
|
96 |
+
start = int(pd.to_datetime(start).timestamp())
|
97 |
+
end = int(pd.to_datetime(end).timestamp())
|
98 |
+
|
99 |
+
# Filter based on the converted 'Release Date'
|
100 |
+
if not df.empty: # Check if df is non-empty
|
101 |
+
df = df[(df['Temp Date'] >= start) & (df['Temp Date'] <= end)]
|
102 |
+
|
103 |
+
df = filter_cols(df)
|
104 |
+
df = df.sort_values(by='Clemscore', ascending=False)
|
105 |
+
|
106 |
+
print(df)
|
107 |
+
|
108 |
+
return df # Return the filtered dataframe
|
109 |
+
|
src/process_data.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
from src.collect_data import fetch_version_metadata, fetch_registry_data
|
6 |
+
from assets.text_content import LANG_MAPPING
|
7 |
+
PRICING_PATH = os.path.join('assets', 'pricing.json')
|
8 |
+
|
9 |
+
# Convert parameters to float, handling both B and T suffixes
|
10 |
+
def convert_parameters(param):
|
11 |
+
if pd.isna(param) or param == '':
|
12 |
+
return None
|
13 |
+
param = str(param)
|
14 |
+
if 'T' in param:
|
15 |
+
return float(param.replace('T', '')) * 1000
|
16 |
+
return float(param.replace('B', ''))
|
17 |
+
|
18 |
+
# Clean price strings by removing '$' and handling empty strings
|
19 |
+
def clean_price(price):
|
20 |
+
if pd.isna(price) or price == '':
|
21 |
+
return None
|
22 |
+
return float(price.replace('$', ''))
|
23 |
+
|
24 |
+
# Handle language mapping for both string and list inputs
|
25 |
+
def map_languages(languages):
|
26 |
+
if isinstance(languages, float) and pd.isna(languages):
|
27 |
+
return None
|
28 |
+
# If it's already a list
|
29 |
+
if isinstance(languages, list):
|
30 |
+
return ', '.join([LANG_MAPPING.get(str(lang), str(lang)) for lang in languages])
|
31 |
+
# If it's a string
|
32 |
+
if isinstance(languages, str):
|
33 |
+
return ', '.join([LANG_MAPPING.get(lang.strip(), lang.strip()) for lang in languages.split(',')])
|
34 |
+
# If it's an array or any other type
|
35 |
+
try:
|
36 |
+
return ', '.join([str(lang) for lang in languages])
|
37 |
+
except:
|
38 |
+
return str(languages)
|
39 |
+
|
40 |
+
# Extract multimodality fields
|
41 |
+
def get_multimodality_field(model_data, field):
|
42 |
+
try:
|
43 |
+
return model_data.get('model_config', {}).get('multimodality', {}).get(field, False)
|
44 |
+
except:
|
45 |
+
return False
|
46 |
+
|
47 |
+
|
48 |
+
def merge_data():
|
49 |
+
|
50 |
+
mm_latency_df, mm_result_df, text_latency_df, text_result_df = fetch_version_metadata()
|
51 |
+
registry_data = fetch_registry_data()
|
52 |
+
with open(PRICING_PATH, 'r') as f:
|
53 |
+
pricing_data = json.load(f)
|
54 |
+
|
55 |
+
# Ensure the unnamed column is renamed to 'model'
|
56 |
+
mm_result_df.rename(columns={'Unnamed: 0': 'model', '-, clemscore': 'clemscore'}, inplace=True)
|
57 |
+
text_result_df.rename(columns={'Unnamed: 0': 'model', '-, clemscore': 'clemscore'}, inplace=True)
|
58 |
+
mm_result_df['model'] = mm_result_df['model'].str.split('-t0.0--').str[0]
|
59 |
+
text_result_df['model'] = text_result_df['model'].str.split('-t0.0--').str[0] # Bug in get_latency.py, split by -t0.0 instead of -t (gpt-3.5-turbo/gpt-4-turbo breaks)
|
60 |
+
|
61 |
+
# Merge datasets to compute average values
|
62 |
+
avg_latency_df = pd.concat([mm_latency_df, text_latency_df], axis=0).groupby('model')['latency'].mean().reset_index()
|
63 |
+
avg_clemscore_df = pd.concat([mm_result_df, text_result_df], axis=0).groupby('model')['clemscore'].mean().reset_index()
|
64 |
+
|
65 |
+
# Merge latency, clemscore, registry, and pricing data
|
66 |
+
lat_clem_df = pd.merge(avg_latency_df, avg_clemscore_df, on='model', how='outer')
|
67 |
+
|
68 |
+
# Convert registry_data to DataFrame for easier merging
|
69 |
+
registry_df = pd.DataFrame(registry_data)
|
70 |
+
|
71 |
+
# Extract license info
|
72 |
+
registry_df['license_name'] = registry_df['license'].apply(lambda x: x['name'])
|
73 |
+
registry_df['license_url'] = registry_df['license'].apply(lambda x: x['url'])
|
74 |
+
|
75 |
+
# Add individual multimodality columns
|
76 |
+
registry_df['single_image'] = registry_df.apply(lambda x: get_multimodality_field(x, 'single_image'), axis=1)
|
77 |
+
registry_df['multiple_images'] = registry_df.apply(lambda x: get_multimodality_field(x, 'multiple_images'), axis=1)
|
78 |
+
registry_df['audio'] = registry_df.apply(lambda x: get_multimodality_field(x, 'audio'), axis=1)
|
79 |
+
registry_df['video'] = registry_df.apply(lambda x: get_multimodality_field(x, 'video'), axis=1)
|
80 |
+
|
81 |
+
# Update columns list to include new multimodality fields
|
82 |
+
registry_df = registry_df[[
|
83 |
+
'model_name', 'parameters', 'release_date', 'open_weight',
|
84 |
+
'languages', 'context_size', 'license_name', 'license_url',
|
85 |
+
'single_image', 'multiple_images', 'audio', 'video'
|
86 |
+
]]
|
87 |
+
|
88 |
+
# Merge with previous data
|
89 |
+
merged_df = pd.merge(
|
90 |
+
lat_clem_df,
|
91 |
+
registry_df,
|
92 |
+
left_on='model',
|
93 |
+
right_on='model_name',
|
94 |
+
how='inner'
|
95 |
+
)
|
96 |
+
|
97 |
+
# Update column renaming
|
98 |
+
merged_df = merged_df.rename(columns={
|
99 |
+
'model': 'Model Name',
|
100 |
+
'latency': 'Latency (s)',
|
101 |
+
'clemscore': 'Clemscore',
|
102 |
+
'parameters': 'Parameters (B)',
|
103 |
+
'release_date': 'Release Date',
|
104 |
+
'open_weight': 'Open Weight',
|
105 |
+
'languages': 'Languages',
|
106 |
+
'context_size': 'Context Size (k)',
|
107 |
+
'license_name': 'License Name',
|
108 |
+
'license_url': 'License URL',
|
109 |
+
'single_image': 'Single Image',
|
110 |
+
'multiple_images': 'Multiple Images',
|
111 |
+
'audio': 'Audio',
|
112 |
+
'video': 'Video'
|
113 |
+
})
|
114 |
+
|
115 |
+
# Convert pricing_data list to DataFrame
|
116 |
+
pricing_df = pd.DataFrame(pricing_data)
|
117 |
+
pricing_df['input'] = pricing_df['input'].apply(clean_price)
|
118 |
+
pricing_df['output'] = pricing_df['output'].apply(clean_price)
|
119 |
+
|
120 |
+
# Merge pricing data with the existing dataframe
|
121 |
+
merged_df = pd.merge(
|
122 |
+
merged_df,
|
123 |
+
pricing_df,
|
124 |
+
left_on='Model Name',
|
125 |
+
right_on='model_id',
|
126 |
+
how='left'
|
127 |
+
)
|
128 |
+
|
129 |
+
# Drop duplicate model column and rename price columns
|
130 |
+
merged_df = merged_df.drop('model_id', axis=1)
|
131 |
+
merged_df = merged_df.rename(columns={
|
132 |
+
'input': 'Input $/1M tokens',
|
133 |
+
'output': 'Output $/1M tokens'
|
134 |
+
})
|
135 |
+
|
136 |
+
# Fill NaN values with 0.0 for pricing columns
|
137 |
+
merged_df['Input $/1M tokens'] = merged_df['Input $/1M tokens'].fillna(0.0)
|
138 |
+
merged_df['Output $/1M tokens'] = merged_df['Output $/1M tokens'].fillna(0.0)
|
139 |
+
|
140 |
+
# Convert parameters and set to None for commercial models
|
141 |
+
merged_df['Parameters (B)'] = merged_df.apply(
|
142 |
+
lambda row: None if not row['Open Weight'] else convert_parameters(row['Parameters (B)']),
|
143 |
+
axis=1
|
144 |
+
)
|
145 |
+
|
146 |
+
merged_df['License'] = merged_df.apply(lambda row: f'<a href="{row["License URL"]}" style="color: blue;">{row["License Name"]}</a>', axis=1)
|
147 |
+
merged_df['Temp Date'] = merged_df['Release Date']
|
148 |
+
|
149 |
+
merged_df['Languages'] = merged_df['Languages'].apply(map_languages)
|
150 |
+
|
151 |
+
# Sort by Clemscore in descending order
|
152 |
+
merged_df = merged_df.sort_values(by='Clemscore', ascending=False)
|
153 |
+
|
154 |
+
# Drop model_name column
|
155 |
+
merged_df.drop(columns=['model_name'], inplace=True)
|
156 |
+
|
157 |
+
return merged_df
|
158 |
+
|
159 |
+
if __name__=='__main__':
|
160 |
+
merged_df = merge_data()
|
161 |
+
# # Save to CSV
|
162 |
+
output_path = os.path.join('assets', 'merged_data.csv')
|
163 |
+
merged_df.to_csv(output_path, index=False)
|
tempapp.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from date_rangeslider import RangeSlider
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
text = "## The selected date range is: {min} to {max}"
|
6 |
+
|
7 |
+
with gr.Blocks() as demo:
|
8 |
+
with gr.Tabs():
|
9 |
+
with gr.Tab("Demo"):
|
10 |
+
gr.Markdown("""## π Date RangeSlider
|
11 |
+
|
12 |
+
## Drag either end and see the selected date range update in real-time.
|
13 |
+
""")
|
14 |
+
range_slider = RangeSlider(
|
15 |
+
minimum="2023-01-01",
|
16 |
+
maximum="2024-12-31",
|
17 |
+
value=("2023-01-01", "2024-12-31")
|
18 |
+
)
|
19 |
+
range_ = gr.Markdown(value=text.format(min="2023-01-01", max="2024-12-31"))
|
20 |
+
range_slider.change(
|
21 |
+
lambda s: text.format(min=s[0], max=s[1]),
|
22 |
+
range_slider,
|
23 |
+
range_,
|
24 |
+
show_progress="hide",
|
25 |
+
trigger_mode="always_last"
|
26 |
+
)
|
27 |
+
gr.Examples([
|
28 |
+
("2023-03-01", "2023-06-30"),
|
29 |
+
("2023-07-01", "2023-12-31")
|
30 |
+
], inputs=[range_slider])
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
demo.launch()
|