|
import os |
|
import cv2 |
|
import PIL.Image as Image |
|
import numpy as np |
|
from vo_eval import file_interface |
|
from pathlib import Path |
|
from plyfile import PlyData, PlyElement |
|
import torch |
|
|
|
def quaternion_to_matrix(quaternions): |
|
""" |
|
Convert rotations given as quaternions to rotation matrices. |
|
|
|
Args: |
|
quaternions: quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
o = torch.stack( |
|
( |
|
1 - two_s * (j * j + k * k), |
|
two_s * (i * j - k * r), |
|
two_s * (i * k + j * r), |
|
two_s * (i * j + k * r), |
|
1 - two_s * (i * i + k * k), |
|
two_s * (j * k - i * r), |
|
two_s * (i * k - j * r), |
|
two_s * (j * k + i * r), |
|
1 - two_s * (i * i + j * j), |
|
), |
|
-1, |
|
) |
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
def main(dataset_path, output_path): |
|
|
|
|
|
output_colmap_path=os.path.join(output_path, 'sparse/0') |
|
output_images_path=os.path.join(output_path, 'images') |
|
|
|
output_dynamic_masks_path=os.path.join(output_path, 'dynamic_masks') |
|
|
|
output_depth_maps_path=os.path.join(output_path, 'depth_maps') |
|
output_confidence_maps_path=os.path.join(output_path, 'confidence_maps') |
|
output_dyna_max_path=os.path.join(output_path, 'dyna_max') |
|
output_dyna_avg_path=os.path.join(output_path, 'dyna_avg') |
|
|
|
os.makedirs(output_colmap_path, exist_ok=True) |
|
os.makedirs(output_images_path, exist_ok=True) |
|
os.makedirs(output_dynamic_masks_path, exist_ok=True) |
|
|
|
os.makedirs(output_depth_maps_path, exist_ok=True) |
|
os.makedirs(output_confidence_maps_path, exist_ok=True) |
|
os.makedirs(output_dyna_max_path, exist_ok=True) |
|
os.makedirs(output_dyna_avg_path, exist_ok=True) |
|
|
|
traj = file_interface.read_tum_trajectory_file(os.path.join(dataset_path, "pred_traj.txt")) |
|
xyz = traj.positions_xyz |
|
quat = traj.orientations_quat_wxyz |
|
timestamps_mat = traj.timestamps |
|
traj_tum = np.column_stack((xyz, quat)) |
|
|
|
|
|
K_flattened = np.loadtxt(os.path.join(dataset_path, "pred_intrinsics.txt"), dtype=np.float32) |
|
K = K_flattened.reshape(-1, 3, 3) |
|
|
|
|
|
output_intrinsics_file = os.path.join(output_path, "pred_intrinsics.txt") |
|
os.system(f"cp {os.path.join(dataset_path, 'pred_intrinsics.txt')} {output_intrinsics_file}") |
|
|
|
|
|
output_traj_file = os.path.join(output_path, "pred_traj.txt") |
|
os.system(f"cp {os.path.join(dataset_path, 'pred_traj.txt')} {output_traj_file}") |
|
|
|
|
|
rgb_files = sorted(Path(dataset_path).glob('frame_*.png'), key=lambda x: int(x.stem.split('_')[-1])) |
|
rgbs = [] |
|
for rgb_file in rgb_files: |
|
output_rgb_file = os.path.join(output_images_path, rgb_file.name) |
|
os.system(f"cp {rgb_file} {output_rgb_file}") |
|
|
|
|
|
ori_size = np.array(Image.open(rgb_files[0]).convert('RGB')).shape[:2][::-1] |
|
intrinsics = K |
|
save_colmap_cameras(ori_size, intrinsics, os.path.join(output_colmap_path, 'cameras.txt')) |
|
|
|
train_img_list = rgb_files |
|
|
|
poses = [] |
|
for i in range(traj_tum.shape[0]): |
|
pose = tumpose_to_c2w(traj_tum[i]) |
|
poses.append(pose) |
|
|
|
save_colmap_images(poses, os.path.join(output_colmap_path, 'images.txt'), train_img_list) |
|
|
|
|
|
mask_files = sorted(Path(dataset_path).glob('dynamic_mask_*.png'), key=lambda x: int(x.stem.split('_')[-1])) |
|
for i, mask_file in enumerate(mask_files): |
|
output_mask_file = os.path.join(output_dynamic_masks_path, f"dynamic_mask_{i:04d}.png") |
|
os.system(f"cp {mask_file} {output_mask_file}") |
|
|
|
|
|
|
|
|
|
|
|
depth_map_files = sorted(Path(dataset_path).glob('frame_*.npy'), key=lambda x: int(x.stem.split('_')[-1])) |
|
for i, depth_map_file in enumerate(depth_map_files): |
|
output_depth_map_file = os.path.join(output_depth_maps_path, f"frame_{i:04d}.npy") |
|
os.system(f"cp {depth_map_file} {output_depth_map_file}") |
|
|
|
|
|
confidence_files = sorted(Path(dataset_path).glob('conf_*.npy'), key=lambda x: int(x.stem.split('_')[-1])) |
|
for i, confidence_file in enumerate(confidence_files): |
|
output_confidence_file = os.path.join(output_confidence_maps_path, f"conf_{i:04d}.npy") |
|
os.system(f"cp {confidence_file} {output_confidence_file}") |
|
|
|
|
|
dyna_max_files = sorted(Path(dataset_path).glob('dyna_max_*.npy'), key=lambda x: int(x.stem.split('_')[-1])) |
|
for i, dyna_max_file in enumerate(dyna_max_files): |
|
output_dyna_max_file = os.path.join(output_dyna_max_path, f"dyna_max_{i:04d}.npy") |
|
os.system(f"cp {dyna_max_file} {output_dyna_max_file}") |
|
|
|
|
|
dyna_avg_files = sorted(Path(dataset_path).glob('dyna_avg_*.npy'), key=lambda x: int(x.stem.split('_')[-1])) |
|
for i, dyna_avg_file in enumerate(dyna_avg_files): |
|
output_dyna_avg_file = os.path.join(output_dyna_avg_path, f"dyna_avg_{i:04d}.npy") |
|
os.system(f"cp {dyna_avg_file} {output_dyna_avg_file}") |
|
|
|
|
|
|
|
|
|
def depth_to_pts3d(K, pose, W, H, depth): |
|
|
|
assert (K[:, 0, 0] == K[:, 1, 1]).all() |
|
focals = K[:, 0, 0] |
|
pp = K[:, :2, 2] |
|
im_poses = pose |
|
grid = [xy_grid(W, H) for _ in range(len(depth))] |
|
|
|
|
|
rel_ptmaps = _fast_depthmap_to_pts3d(torch.tensor(depth), torch.tensor(grid), torch.tensor(focals), pp=torch.tensor(pp)) |
|
|
|
return geotrf(torch.tensor(im_poses), rel_ptmaps) |
|
|
|
def xy_grid(W, H, device=None, origin=(0, 0), unsqueeze=None, cat_dim=-1, homogeneous=False, **arange_kw): |
|
""" Output a (H,W,2) array of int32 |
|
with output[j,i,0] = i + origin[0] |
|
output[j,i,1] = j + origin[1] |
|
""" |
|
if device is None: |
|
|
|
arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones |
|
else: |
|
|
|
arange = lambda *a, **kw: torch.arange(*a, device=device, **kw) |
|
meshgrid, stack = torch.meshgrid, torch.stack |
|
ones = lambda *a: torch.ones(*a, device=device) |
|
|
|
tw, th = [arange(o, o+s, **arange_kw) for s, o in zip((W, H), origin)] |
|
grid = meshgrid(tw, th, indexing='xy') |
|
if homogeneous: |
|
grid = grid + (ones((H, W)),) |
|
if unsqueeze is not None: |
|
grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze)) |
|
if cat_dim is not None: |
|
grid = stack(grid, cat_dim) |
|
return grid |
|
|
|
def geotrf(Trf, pts, ncol=None, norm=False): |
|
""" Apply a geometric transformation to a list of 3-D points. |
|
|
|
H: 3x3 or 4x4 projection matrix (typically a Homography) |
|
p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3) |
|
|
|
ncol: int. number of columns of the result (2 or 3) |
|
norm: float. if != 0, the resut is projected on the z=norm plane. |
|
|
|
Returns an array of projected 2d points. |
|
""" |
|
assert Trf.ndim >= 2 |
|
if isinstance(Trf, np.ndarray): |
|
pts = np.asarray(pts) |
|
elif isinstance(Trf, torch.Tensor): |
|
pts = torch.as_tensor(pts, dtype=Trf.dtype) |
|
|
|
|
|
output_reshape = pts.shape[:-1] |
|
ncol = ncol or pts.shape[-1] |
|
|
|
|
|
if (isinstance(Trf, torch.Tensor) and isinstance(pts, torch.Tensor) and |
|
Trf.ndim == 3 and pts.ndim == 4): |
|
d = pts.shape[3] |
|
if Trf.shape[-1] == d: |
|
pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts) |
|
elif Trf.shape[-1] == d+1: |
|
pts = torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts) + Trf[:, None, None, :d, d] |
|
else: |
|
raise ValueError(f'bad shape, not ending with 3 or 4, for {pts.shape=}') |
|
else: |
|
if Trf.ndim >= 3: |
|
n = Trf.ndim-2 |
|
assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match' |
|
Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1]) |
|
|
|
if pts.ndim > Trf.ndim: |
|
|
|
pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1]) |
|
elif pts.ndim == 2: |
|
|
|
pts = pts[:, None, :] |
|
|
|
if pts.shape[-1]+1 == Trf.shape[-1]: |
|
Trf = Trf.swapaxes(-1, -2) |
|
pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :] |
|
elif pts.shape[-1] == Trf.shape[-1]: |
|
Trf = Trf.swapaxes(-1, -2) |
|
pts = pts @ Trf |
|
else: |
|
pts = Trf @ pts.T |
|
if pts.ndim >= 2: |
|
pts = pts.swapaxes(-1, -2) |
|
|
|
if norm: |
|
pts = pts / pts[..., -1:] |
|
if norm != 1: |
|
pts *= norm |
|
|
|
res = pts[..., :ncol].reshape(*output_reshape, ncol) |
|
return res |
|
|
|
def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp): |
|
pp = pp.unsqueeze(1) |
|
focal = focal[:, None, None] |
|
|
|
assert focal.shape == (len(depth), 1, 1) |
|
assert pp.shape == (len(depth), 1, 2) |
|
assert pixel_grid.shape == depth.shape + (2,) |
|
depth = depth.unsqueeze(-1) |
|
pixel_grid = pixel_grid.reshape(len(depth), -1, 2) |
|
depth = depth.reshape(len(depth), -1, 1) |
|
return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1) |
|
|
|
|
|
def tumpose_to_c2w(tum_pose): |
|
""" |
|
Convert a TUM pose (translation and quaternion) back to a camera-to-world matrix (4x4) in CUDA mode. |
|
|
|
input: tum_pose - 7-element array: [x, y, z, qw, qx, qy, qz] |
|
output: c2w - 4x4 camera-to-world matrix |
|
""" |
|
|
|
xyz = tum_pose[:3] |
|
|
|
|
|
qw, qx, qy, qz = tum_pose[3:] |
|
quat = torch.tensor([qx, qy, qz, qw]) |
|
|
|
|
|
R = quaternion_to_matrix(quat.unsqueeze(0)).squeeze(0).numpy() |
|
|
|
|
|
c2w = np.eye(4) |
|
c2w[:3, :3] = R |
|
c2w[:3, 3] = xyz |
|
|
|
return c2w |
|
|
|
def save_colmap_images(poses, images_file, train_img_list): |
|
with open(images_file, 'w') as f: |
|
for i, pose in enumerate(poses, 1): |
|
|
|
pose = np.linalg.inv(pose) |
|
R = pose[:3, :3] |
|
t = pose[:3, 3] |
|
q = R_to_quaternion(R) |
|
f.write(f"{i} {q[0]} {q[1]} {q[2]} {q[3]} {t[0]} {t[1]} {t[2]} {i} {train_img_list[i-1]}\n") |
|
f.write(f"\n") |
|
|
|
def save_colmap_cameras(ori_size, intrinsics, camera_file): |
|
with open(camera_file, 'w') as f: |
|
for i, K in enumerate(intrinsics, 1): |
|
width, height = ori_size |
|
scale_factor_x = width/2 / K[0, 2] |
|
scale_factor_y = height/2 / K[1, 2] |
|
|
|
|
|
f.write(f"{i} PINHOLE {width} {height} {K[0, 0]*scale_factor_x} {K[1, 1]*scale_factor_x} {width/2} {height/2}\n") |
|
|
|
|
|
def storePly(path, xyz, rgb): |
|
|
|
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), |
|
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'), |
|
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] |
|
|
|
normals = np.zeros_like(xyz) |
|
|
|
elements = np.empty(xyz.shape[0], dtype=dtype) |
|
attributes = np.concatenate((xyz, normals, rgb), axis=1) |
|
elements[:] = list(map(tuple, attributes)) |
|
|
|
|
|
vertex_element = PlyElement.describe(elements, 'vertex') |
|
ply_data = PlyData([vertex_element]) |
|
ply_data.write(path) |
|
|
|
def R_to_quaternion(R): |
|
""" |
|
Convert a rotation matrix to a quaternion. |
|
|
|
Parameters: |
|
- R: A 3x3 numpy array representing a rotation matrix. |
|
|
|
Returns: |
|
- A numpy array representing the quaternion [w, x, y, z]. |
|
""" |
|
m00, m01, m02 = R[0, 0], R[0, 1], R[0, 2] |
|
m10, m11, m12 = R[1, 0], R[1, 1], R[1, 2] |
|
m20, m21, m22 = R[2, 0], R[2, 1], R[2, 2] |
|
trace = m00 + m11 + m22 |
|
|
|
if trace > 0: |
|
s = 0.5 / np.sqrt(trace + 1.0) |
|
w = 0.25 / s |
|
x = (m21 - m12) * s |
|
y = (m02 - m20) * s |
|
z = (m10 - m01) * s |
|
elif (m00 > m11) and (m00 > m22): |
|
s = np.sqrt(1.0 + m00 - m11 - m22) * 2 |
|
w = (m21 - m12) / s |
|
x = 0.25 * s |
|
y = (m01 + m10) / s |
|
z = (m02 + m20) / s |
|
elif m11 > m22: |
|
s = np.sqrt(1.0 + m11 - m00 - m22) * 2 |
|
w = (m02 - m20) / s |
|
x = (m01 + m10) / s |
|
y = 0.25 * s |
|
z = (m12 + m21) / s |
|
else: |
|
s = np.sqrt(1.0 + m22 - m00 - m11) * 2 |
|
w = (m10 - m01) / s |
|
x = (m02 + m20) / s |
|
y = (m12 + m21) / s |
|
z = 0.25 * s |
|
|
|
return np.array([w, x, y, z]) |
|
|
|
if __name__ == "__main__": |
|
dataset_path = 'results/sintel' |
|
output_path = dataset_path.replace('sintel', 'sintel_rearranged') |
|
|
|
dataset_folders = [f for f in os.listdir(dataset_path) if os.path.isdir(os.path.join(dataset_path, f))] |
|
for seq in sorted(dataset_folders): |
|
if seq != '__pycache__': |
|
print(f'Processing {seq}') |
|
data_path = os.path.join(dataset_path, seq) |
|
output_path = data_path.replace('sintel', 'sintel_rearranged') |
|
main(data_path, output_path) |