File size: 14,195 Bytes
4f6b78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import os
import cv2
import PIL.Image as Image
import numpy as np
from vo_eval import file_interface
from pathlib import Path
from plyfile import PlyData, PlyElement
import torch
def quaternion_to_matrix(quaternions):
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def main(dataset_path, output_path):
# load pred_traj
output_colmap_path=os.path.join(output_path, 'sparse/0')
output_images_path=os.path.join(output_path, 'images')
output_dynamic_masks_path=os.path.join(output_path, 'dynamic_masks')
# output_enlarged_dynamic_masks_path=os.path.join(output_path, 'enlarged_dynamic_masks')
output_depth_maps_path=os.path.join(output_path, 'depth_maps')
output_confidence_maps_path=os.path.join(output_path, 'confidence_maps')
output_dyna_max_path=os.path.join(output_path, 'dyna_max')
output_dyna_avg_path=os.path.join(output_path, 'dyna_avg')
os.makedirs(output_colmap_path, exist_ok=True)
os.makedirs(output_images_path, exist_ok=True)
os.makedirs(output_dynamic_masks_path, exist_ok=True)
# os.makedirs(output_enlarged_dynamic_masks_path, exist_ok=True)
os.makedirs(output_depth_maps_path, exist_ok=True)
os.makedirs(output_confidence_maps_path, exist_ok=True)
os.makedirs(output_dyna_max_path, exist_ok=True)
os.makedirs(output_dyna_avg_path, exist_ok=True)
traj = file_interface.read_tum_trajectory_file(os.path.join(dataset_path, "pred_traj.txt"))
xyz = traj.positions_xyz
quat = traj.orientations_quat_wxyz
timestamps_mat = traj.timestamps
traj_tum = np.column_stack((xyz, quat))
# load pred intrinsics
K_flattened = np.loadtxt(os.path.join(dataset_path, "pred_intrinsics.txt"), dtype=np.float32)
K = K_flattened.reshape(-1, 3, 3)
# Copy pred_intrinsics to output path
output_intrinsics_file = os.path.join(output_path, "pred_intrinsics.txt")
os.system(f"cp {os.path.join(dataset_path, 'pred_intrinsics.txt')} {output_intrinsics_file}")
# Copy pred_traj to output path
output_traj_file = os.path.join(output_path, "pred_traj.txt")
os.system(f"cp {os.path.join(dataset_path, 'pred_traj.txt')} {output_traj_file}")
rgb_files = sorted(Path(dataset_path).glob('frame_*.png'), key=lambda x: int(x.stem.split('_')[-1]))
rgbs = []
for rgb_file in rgb_files:
output_rgb_file = os.path.join(output_images_path, rgb_file.name)
os.system(f"cp {rgb_file} {output_rgb_file}")
ori_size = np.array(Image.open(rgb_files[0]).convert('RGB')).shape[:2][::-1]
intrinsics = K
save_colmap_cameras(ori_size, intrinsics, os.path.join(output_colmap_path, 'cameras.txt'))
train_img_list = rgb_files
poses = []
for i in range(traj_tum.shape[0]):
pose = tumpose_to_c2w(traj_tum[i])
poses.append(pose)
save_colmap_images(poses, os.path.join(output_colmap_path, 'images.txt'), train_img_list)
# load predict dynamic masks
mask_files = sorted(Path(dataset_path).glob('dynamic_mask_*.png'), key=lambda x: int(x.stem.split('_')[-1]))
for i, mask_file in enumerate(mask_files):
output_mask_file = os.path.join(output_dynamic_masks_path, f"dynamic_mask_{i:04d}.png")
os.system(f"cp {mask_file} {output_mask_file}")
# mask_file = str(mask_file).replace('dynamic_mask', 'enlarged_dynamic_mask')
# output_mask_file = str(output_mask_file).replace('dynamic_mask', 'enlarged_dynamic_mask')
# os.system(f"cp {mask_file} {output_mask_file}")
# load predict depth
depth_map_files = sorted(Path(dataset_path).glob('frame_*.npy'), key=lambda x: int(x.stem.split('_')[-1]))
for i, depth_map_file in enumerate(depth_map_files):
output_depth_map_file = os.path.join(output_depth_maps_path, f"frame_{i:04d}.npy")
os.system(f"cp {depth_map_file} {output_depth_map_file}")
# load confidence
confidence_files = sorted(Path(dataset_path).glob('conf_*.npy'), key=lambda x: int(x.stem.split('_')[-1]))
for i, confidence_file in enumerate(confidence_files):
output_confidence_file = os.path.join(output_confidence_maps_path, f"conf_{i:04d}.npy")
os.system(f"cp {confidence_file} {output_confidence_file}")
# load dyna_max
dyna_max_files = sorted(Path(dataset_path).glob('dyna_max_*.npy'), key=lambda x: int(x.stem.split('_')[-1]))
for i, dyna_max_file in enumerate(dyna_max_files):
output_dyna_max_file = os.path.join(output_dyna_max_path, f"dyna_max_{i:04d}.npy")
os.system(f"cp {dyna_max_file} {output_dyna_max_file}")
# load dyna_avg
dyna_avg_files = sorted(Path(dataset_path).glob('dyna_avg_*.npy'), key=lambda x: int(x.stem.split('_')[-1]))
for i, dyna_avg_file in enumerate(dyna_avg_files):
output_dyna_avg_file = os.path.join(output_dyna_avg_path, f"dyna_avg_{i:04d}.npy")
os.system(f"cp {dyna_avg_file} {output_dyna_avg_file}")
def depth_to_pts3d(K, pose, W, H, depth):
# Get depths and projection params if not provided
assert (K[:, 0, 0] == K[:, 1, 1]).all()
focals = K[:, 0, 0]
pp = K[:, :2, 2]
im_poses = pose
grid = [xy_grid(W, H) for _ in range(len(depth))]
# get pointmaps in camera frame
rel_ptmaps = _fast_depthmap_to_pts3d(torch.tensor(depth), torch.tensor(grid), torch.tensor(focals), pp=torch.tensor(pp))
# project to world frame
return geotrf(torch.tensor(im_poses), rel_ptmaps)
def xy_grid(W, H, device=None, origin=(0, 0), unsqueeze=None, cat_dim=-1, homogeneous=False, **arange_kw):
""" Output a (H,W,2) array of int32
with output[j,i,0] = i + origin[0]
output[j,i,1] = j + origin[1]
"""
if device is None:
# numpy
arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones
else:
# torch
arange = lambda *a, **kw: torch.arange(*a, device=device, **kw)
meshgrid, stack = torch.meshgrid, torch.stack
ones = lambda *a: torch.ones(*a, device=device)
tw, th = [arange(o, o+s, **arange_kw) for s, o in zip((W, H), origin)]
grid = meshgrid(tw, th, indexing='xy')
if homogeneous:
grid = grid + (ones((H, W)),)
if unsqueeze is not None:
grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze))
if cat_dim is not None:
grid = stack(grid, cat_dim)
return grid
def geotrf(Trf, pts, ncol=None, norm=False):
""" Apply a geometric transformation to a list of 3-D points.
H: 3x3 or 4x4 projection matrix (typically a Homography)
p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)
ncol: int. number of columns of the result (2 or 3)
norm: float. if != 0, the resut is projected on the z=norm plane.
Returns an array of projected 2d points.
"""
assert Trf.ndim >= 2
if isinstance(Trf, np.ndarray):
pts = np.asarray(pts)
elif isinstance(Trf, torch.Tensor):
pts = torch.as_tensor(pts, dtype=Trf.dtype)
# adapt shape if necessary
output_reshape = pts.shape[:-1]
ncol = ncol or pts.shape[-1]
# optimized code
if (isinstance(Trf, torch.Tensor) and isinstance(pts, torch.Tensor) and
Trf.ndim == 3 and pts.ndim == 4):
d = pts.shape[3]
if Trf.shape[-1] == d:
pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts)
elif Trf.shape[-1] == d+1:
pts = torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts) + Trf[:, None, None, :d, d]
else:
raise ValueError(f'bad shape, not ending with 3 or 4, for {pts.shape=}')
else:
if Trf.ndim >= 3:
n = Trf.ndim-2
assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match'
Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])
if pts.ndim > Trf.ndim:
# Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
elif pts.ndim == 2:
# Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
pts = pts[:, None, :]
if pts.shape[-1]+1 == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
elif pts.shape[-1] == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf
else:
pts = Trf @ pts.T
if pts.ndim >= 2:
pts = pts.swapaxes(-1, -2)
if norm:
pts = pts / pts[..., -1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
if norm != 1:
pts *= norm
res = pts[..., :ncol].reshape(*output_reshape, ncol)
return res
def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp):
pp = pp.unsqueeze(1)
focal = focal[:, None, None]
assert focal.shape == (len(depth), 1, 1)
assert pp.shape == (len(depth), 1, 2)
assert pixel_grid.shape == depth.shape + (2,)
depth = depth.unsqueeze(-1)
pixel_grid = pixel_grid.reshape(len(depth), -1, 2)
depth = depth.reshape(len(depth), -1, 1)
return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1)
def tumpose_to_c2w(tum_pose):
"""
Convert a TUM pose (translation and quaternion) back to a camera-to-world matrix (4x4) in CUDA mode.
input: tum_pose - 7-element array: [x, y, z, qw, qx, qy, qz]
output: c2w - 4x4 camera-to-world matrix
"""
# Extract translation and quaternion from the TUM pose
xyz = tum_pose[:3]
# the order should be qx qy qz qw
qw, qx, qy, qz = tum_pose[3:]
quat = torch.tensor([qx, qy, qz, qw])
# Convert quaternion to rotation matrix using PyTorch3D
R = quaternion_to_matrix(quat.unsqueeze(0)).squeeze(0).numpy() # 3x3 rotation matrix
# Create the 4x4 camera-to-world matrix
c2w = np.eye(4)
c2w[:3, :3] = R # Rotation part
c2w[:3, 3] = xyz # Translation part
return c2w
def save_colmap_images(poses, images_file, train_img_list):
with open(images_file, 'w') as f:
for i, pose in enumerate(poses, 1): # Starting index at 1
# breakpoint()
pose = np.linalg.inv(pose)
R = pose[:3, :3]
t = pose[:3, 3]
q = R_to_quaternion(R) # Convert rotation matrix to quaternion
f.write(f"{i} {q[0]} {q[1]} {q[2]} {q[3]} {t[0]} {t[1]} {t[2]} {i} {train_img_list[i-1]}\n")
f.write(f"\n")
def save_colmap_cameras(ori_size, intrinsics, camera_file):
with open(camera_file, 'w') as f:
for i, K in enumerate(intrinsics, 1): # Starting index at 1
width, height = ori_size
scale_factor_x = width/2 / K[0, 2]
scale_factor_y = height/2 / K[1, 2]
# assert scale_factor_x==scale_factor_y, "scale factor is not same for x and y"
# print(f'scale factor is not same for x{scale_factor_x} and y {scale_factor_y}')
f.write(f"{i} PINHOLE {width} {height} {K[0, 0]*scale_factor_x} {K[1, 1]*scale_factor_x} {width/2} {height/2}\n") # scale focal
# f.write(f"{i} PINHOLE {width} {height} {K[0, 0]} {K[1, 1]} {K[0, 2]} {K[1, 2]}\n")
def storePly(path, xyz, rgb):
# Define the dtype for the structured array
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
normals = np.zeros_like(xyz)
elements = np.empty(xyz.shape[0], dtype=dtype)
attributes = np.concatenate((xyz, normals, rgb), axis=1)
elements[:] = list(map(tuple, attributes))
# Create the PlyData object and write to file
vertex_element = PlyElement.describe(elements, 'vertex')
ply_data = PlyData([vertex_element])
ply_data.write(path)
def R_to_quaternion(R):
"""
Convert a rotation matrix to a quaternion.
Parameters:
- R: A 3x3 numpy array representing a rotation matrix.
Returns:
- A numpy array representing the quaternion [w, x, y, z].
"""
m00, m01, m02 = R[0, 0], R[0, 1], R[0, 2]
m10, m11, m12 = R[1, 0], R[1, 1], R[1, 2]
m20, m21, m22 = R[2, 0], R[2, 1], R[2, 2]
trace = m00 + m11 + m22
if trace > 0:
s = 0.5 / np.sqrt(trace + 1.0)
w = 0.25 / s
x = (m21 - m12) * s
y = (m02 - m20) * s
z = (m10 - m01) * s
elif (m00 > m11) and (m00 > m22):
s = np.sqrt(1.0 + m00 - m11 - m22) * 2
w = (m21 - m12) / s
x = 0.25 * s
y = (m01 + m10) / s
z = (m02 + m20) / s
elif m11 > m22:
s = np.sqrt(1.0 + m11 - m00 - m22) * 2
w = (m02 - m20) / s
x = (m01 + m10) / s
y = 0.25 * s
z = (m12 + m21) / s
else:
s = np.sqrt(1.0 + m22 - m00 - m11) * 2
w = (m10 - m01) / s
x = (m02 + m20) / s
y = (m12 + m21) / s
z = 0.25 * s
return np.array([w, x, y, z])
if __name__ == "__main__":
dataset_path = 'results/sintel'
output_path = dataset_path.replace('sintel', 'sintel_rearranged')
dataset_folders = [f for f in os.listdir(dataset_path) if os.path.isdir(os.path.join(dataset_path, f))]
for seq in sorted(dataset_folders):
if seq != '__pycache__':
print(f'Processing {seq}')
data_path = os.path.join(dataset_path, seq)
output_path = data_path.replace('sintel', 'sintel_rearranged')
main(data_path, output_path) |