Spaces:
Runtime error
Runtime error
import logging | |
import math | |
import fvcore.nn.weight_init as weight_init | |
import torch | |
import torch.nn as nn | |
from detectron2.layers import CNNBlockBase, Conv2d, get_norm | |
from detectron2.modeling.backbone.fpn import _assert_strides_are_log2_contiguous | |
import torch.nn.functional as F | |
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec | |
from .utils import ( | |
PatchEmbed, | |
add_decomposed_rel_pos, | |
get_abs_pos, | |
window_partition, | |
window_unpartition, | |
) | |
from functools import partial | |
import torch.utils.checkpoint as checkpoint | |
logger = logging.getLogger(__name__) | |
__all__ = ["ViT", "SimpleFeaturePyramid", "get_vit_lr_decay_rate"] | |
class Attention(nn.Module): | |
"""Multi-head Attention block with relative position embeddings.""" | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=True, | |
use_rel_pos=False, | |
rel_pos_zero_init=True, | |
input_size=None, | |
): | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool: If True, add a learnable bias to query, key, value. | |
rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
input_size (int or None): Input resolution for calculating the relative positional | |
parameter size. | |
""" | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.use_rel_pos = use_rel_pos | |
if self.use_rel_pos: | |
# initialize relative positional embeddings | |
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) | |
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) | |
if not rel_pos_zero_init: | |
nn.init.trunc_normal_(self.rel_pos_h, std=0.02) | |
nn.init.trunc_normal_(self.rel_pos_w, std=0.02) | |
def forward(self, x): | |
B, H, W, _ = x.shape | |
# qkv with shape (3, B, nHead, H * W, C) | |
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
# q, k, v with shape (B * nHead, H * W, C) | |
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) | |
with torch.backends.cuda.sdp_kernel( | |
enable_flash=True, enable_math=False, enable_mem_efficient=True | |
): | |
x = F.scaled_dot_product_attention(q, k, v) | |
attn = (q * self.scale) @ k.transpose(-2, -1) | |
if self.use_rel_pos: | |
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) | |
x = self.proj(x) | |
return x | |
class ResBottleneckBlock(CNNBlockBase): | |
""" | |
The standard bottleneck residual block without the last activation layer. | |
It contains 3 conv layers with kernels 1x1, 3x3, 1x1. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
bottleneck_channels, | |
norm="LN", | |
act_layer=nn.GELU, | |
): | |
""" | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
bottleneck_channels (int): number of output channels for the 3x3 | |
"bottleneck" conv layers. | |
norm (str or callable): normalization for all conv layers. | |
See :func:`layers.get_norm` for supported format. | |
act_layer (callable): activation for all conv layers. | |
""" | |
super().__init__(in_channels, out_channels, 1) | |
self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False) | |
self.norm1 = get_norm(norm, bottleneck_channels) | |
self.act1 = act_layer() | |
self.conv2 = Conv2d( | |
bottleneck_channels, | |
bottleneck_channels, | |
3, | |
padding=1, | |
bias=False, | |
) | |
self.norm2 = get_norm(norm, bottleneck_channels) | |
self.act2 = act_layer() | |
self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False) | |
self.norm3 = get_norm(norm, out_channels) | |
for layer in [self.conv1, self.conv2, self.conv3]: | |
weight_init.c2_msra_fill(layer) | |
for layer in [self.norm1, self.norm2]: | |
layer.weight.data.fill_(1.0) | |
layer.bias.data.zero_() | |
# zero init last norm layer. | |
self.norm3.weight.data.zero_() | |
self.norm3.bias.data.zero_() | |
def forward(self, x): | |
out = x | |
for layer in self.children(): | |
out = layer(out) | |
out = x + out | |
return out | |
class Block(nn.Module): | |
"""Transformer blocks with support of window attention and residual propagation blocks""" | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop_path=0.0, | |
norm_layer=nn.LayerNorm, | |
act_layer=nn.GELU, | |
use_rel_pos=False, | |
rel_pos_zero_init=True, | |
window_size=0, | |
use_residual_block=False, | |
input_size=None, | |
): | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
drop_path (float): Stochastic depth rate. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. If it equals 0, then not | |
use window attention. | |
use_residual_block (bool): If True, use a residual block after the MLP block. | |
input_size (int or None): Input resolution for calculating the relative positional | |
parameter size. | |
""" | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
input_size=input_size if window_size == 0 else (window_size, window_size), | |
) | |
from timm.models.layers import DropPath, Mlp | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) | |
self.window_size = window_size | |
self.use_residual_block = use_residual_block | |
if use_residual_block: | |
# Use a residual block with bottleneck channel as dim // 2 | |
self.residual = ResBottleneckBlock( | |
in_channels=dim, | |
out_channels=dim, | |
bottleneck_channels=dim // 2, | |
norm="LN", | |
act_layer=act_layer, | |
) | |
def forward(self, x): | |
shortcut = x | |
x = self.norm1(x) | |
# Window partition | |
if self.window_size > 0: | |
H, W = x.shape[1], x.shape[2] | |
x, pad_hw = window_partition(x, self.window_size) | |
x = self.attn(x) | |
# Reverse window partition | |
if self.window_size > 0: | |
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) | |
x = shortcut + self.drop_path(x) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
if self.use_residual_block: | |
x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) | |
return x | |
class ViT(Backbone): | |
""" | |
This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`. | |
"Exploring Plain Vision Transformer Backbones for Object Detection", | |
https://arxiv.org/abs/2203.16527 | |
""" | |
def __init__( | |
self, | |
img_size=1024, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop_path_rate=0.0, | |
norm_layer=nn.LayerNorm, | |
act_layer=nn.GELU, | |
use_abs_pos=True, | |
use_rel_pos=False, | |
rel_pos_zero_init=True, | |
window_size=0, | |
window_block_indexes=(), | |
residual_block_indexes=(), | |
use_act_checkpoint=False, | |
pretrain_img_size=224, | |
pretrain_use_cls_token=True, | |
out_feature="last_feat", | |
): | |
""" | |
Args: | |
img_size (int): Input image size. | |
patch_size (int): Patch size. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): Patch embedding dimension. | |
depth (int): Depth of ViT. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
drop_path_rate (float): Stochastic depth rate. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_abs_pos (bool): If True, use absolute positional embeddings. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. | |
window_block_indexes (list): Indexes for blocks using window attention. | |
residual_block_indexes (list): Indexes for blocks using conv propagation. | |
use_act_checkpoint (bool): If True, use activation checkpointing. | |
pretrain_img_size (int): input image size for pretraining models. | |
pretrain_use_cls_token (bool): If True, pretrainig models use class token. | |
out_feature (str): name of the feature from the last block. | |
""" | |
super().__init__() | |
self.pretrain_use_cls_token = pretrain_use_cls_token | |
self.patch_embed = PatchEmbed( | |
kernel_size=(patch_size, patch_size), | |
stride=(patch_size, patch_size), | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
) | |
if use_abs_pos: | |
# Initialize absolute positional embedding with pretrain image size. | |
num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size) | |
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) | |
else: | |
self.pos_embed = None | |
# stochastic depth decay rule | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | |
self.blocks = nn.ModuleList() | |
for i in range(depth): | |
block = Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
window_size=window_size if i in window_block_indexes else 0, | |
use_residual_block=i in residual_block_indexes, | |
input_size=(img_size // patch_size, img_size // patch_size), | |
) | |
if use_act_checkpoint: | |
# TODO: use torch.utils.checkpoint | |
from fairscale.nn.checkpoint import checkpoint_wrapper | |
block = checkpoint_wrapper(block) | |
self.blocks.append(block) | |
self._out_feature_channels = {out_feature: embed_dim} | |
self._out_feature_strides = {out_feature: patch_size} | |
self._out_features = [out_feature] | |
if self.pos_embed is not None: | |
nn.init.trunc_normal_(self.pos_embed, std=0.02) | |
# In our method, we don't use backbone feature with stride 4 | |
self.fpn1 = nn.Sequential( | |
nn.ConvTranspose2d(embed_dim, embed_dim // 2, kernel_size=2, stride=2), | |
) | |
self.fpn2 = nn.Identity() | |
self.fpn3 = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x): | |
x = self.patch_embed(x) | |
if self.pos_embed is not None: | |
x = x + get_abs_pos( | |
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2]) | |
) | |
for blk in self.blocks: | |
x = blk(x) | |
xp = x.permute(0, 3, 1, 2) # (b, h, w, c) --> (b, c, h, w) | |
features = [] | |
ops = [self.fpn1, self.fpn2, self.fpn3] | |
for i in range(len(ops)): | |
features.append(ops[i](xp)) | |
rets = {"res{}".format(u + 3): v for (u,v) in enumerate(features)} | |
return rets | |
class D2ViT(ViT, Backbone): | |
def __init__(self, cfg, input_shape): | |
use_checkpoint = cfg.MODEL.VIT.USE_CHECKPOINT | |
if cfg.MODEL.VIT.NAME == "ViT-Base": | |
embed_dim=768 | |
depth=12 | |
drop_path_rate=0.1 | |
num_heads=12 | |
elif cfg.MODEL.VIT.NAME == "ViT-Large": | |
embed_dim=1024 | |
depth=24 | |
drop_path_rate=0.4 | |
num_heads=16 | |
elif cfg.MODEL.VIT.NAME == "ViT-huge": | |
embed_dim=1280 | |
depth=32 | |
drop_path_rate=0.5 | |
num_heads=16 | |
else: | |
raise ValueError("Unsupported ViT name") | |
super().__init__( | |
img_size=1024, | |
patch_size=16, | |
in_chans=input_shape.channels, | |
embed_dim=embed_dim, | |
depth=depth, | |
num_heads=num_heads, | |
drop_path_rate=drop_path_rate, | |
window_size=14, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
window_block_indexes=[ | |
# 2, 5, 8 11 for global attention | |
0, | |
1, | |
3, | |
4, | |
6, | |
7, | |
9, | |
10, | |
], | |
residual_block_indexes=[], | |
use_rel_pos=True, | |
out_feature="last_feat", | |
use_act_checkpoint=use_checkpoint) | |
self._out_features = cfg.MODEL.VIT.OUT_FEATURES | |
self._out_feature_strides = { | |
"res3": 8, | |
"res4": 16, | |
"res5": 32, | |
} | |
self._out_feature_channels = { | |
"res3": embed_dim // 2, | |
"res4": embed_dim, | |
"res5": embed_dim, | |
} | |
def forward(self, x): | |
""" | |
Args: | |
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. | |
Returns: | |
dict[str->Tensor]: names and the corresponding features | |
""" | |
assert ( | |
x.dim() == 4 | |
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" | |
outputs = {} | |
y = super().forward(x) | |
for k in y.keys(): | |
if k in self._out_features: | |
outputs[k] = y[k] | |
return outputs | |
def output_shape(self): | |
return { | |
name: ShapeSpec( | |
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] | |
) | |
for name in self._out_features | |
} | |
def size_divisibility(self): | |
return 32 |