import logging import math import fvcore.nn.weight_init as weight_init import torch import torch.nn as nn from detectron2.layers import CNNBlockBase, Conv2d, get_norm from detectron2.modeling.backbone.fpn import _assert_strides_are_log2_contiguous import torch.nn.functional as F from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec from .utils import ( PatchEmbed, add_decomposed_rel_pos, get_abs_pos, window_partition, window_unpartition, ) from functools import partial import torch.utils.checkpoint as checkpoint logger = logging.getLogger(__name__) __all__ = ["ViT", "SimpleFeaturePyramid", "get_vit_lr_decay_rate"] class Attention(nn.Module): """Multi-head Attention block with relative position embeddings.""" def __init__( self, dim, num_heads=8, qkv_bias=True, use_rel_pos=False, rel_pos_zero_init=True, input_size=None, ): """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. qkv_bias (bool: If True, add a learnable bias to query, key, value. rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. input_size (int or None): Input resolution for calculating the relative positional parameter size. """ super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.use_rel_pos = use_rel_pos if self.use_rel_pos: # initialize relative positional embeddings self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) if not rel_pos_zero_init: nn.init.trunc_normal_(self.rel_pos_h, std=0.02) nn.init.trunc_normal_(self.rel_pos_w, std=0.02) def forward(self, x): B, H, W, _ = x.shape # qkv with shape (3, B, nHead, H * W, C) qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # q, k, v with shape (B * nHead, H * W, C) q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) with torch.backends.cuda.sdp_kernel( enable_flash=True, enable_math=False, enable_mem_efficient=True ): x = F.scaled_dot_product_attention(q, k, v) attn = (q * self.scale) @ k.transpose(-2, -1) if self.use_rel_pos: attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) attn = attn.softmax(dim=-1) x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) x = self.proj(x) return x class ResBottleneckBlock(CNNBlockBase): """ The standard bottleneck residual block without the last activation layer. It contains 3 conv layers with kernels 1x1, 3x3, 1x1. """ def __init__( self, in_channels, out_channels, bottleneck_channels, norm="LN", act_layer=nn.GELU, ): """ Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. bottleneck_channels (int): number of output channels for the 3x3 "bottleneck" conv layers. norm (str or callable): normalization for all conv layers. See :func:`layers.get_norm` for supported format. act_layer (callable): activation for all conv layers. """ super().__init__(in_channels, out_channels, 1) self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False) self.norm1 = get_norm(norm, bottleneck_channels) self.act1 = act_layer() self.conv2 = Conv2d( bottleneck_channels, bottleneck_channels, 3, padding=1, bias=False, ) self.norm2 = get_norm(norm, bottleneck_channels) self.act2 = act_layer() self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False) self.norm3 = get_norm(norm, out_channels) for layer in [self.conv1, self.conv2, self.conv3]: weight_init.c2_msra_fill(layer) for layer in [self.norm1, self.norm2]: layer.weight.data.fill_(1.0) layer.bias.data.zero_() # zero init last norm layer. self.norm3.weight.data.zero_() self.norm3.bias.data.zero_() def forward(self, x): out = x for layer in self.children(): out = layer(out) out = x + out return out class Block(nn.Module): """Transformer blocks with support of window attention and residual propagation blocks""" def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=True, drop_path=0.0, norm_layer=nn.LayerNorm, act_layer=nn.GELU, use_rel_pos=False, rel_pos_zero_init=True, window_size=0, use_residual_block=False, input_size=None, ): """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. drop_path (float): Stochastic depth rate. norm_layer (nn.Module): Normalization layer. act_layer (nn.Module): Activation layer. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. If it equals 0, then not use window attention. use_residual_block (bool): If True, use a residual block after the MLP block. input_size (int or None): Input resolution for calculating the relative positional parameter size. """ super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, input_size=input_size if window_size == 0 else (window_size, window_size), ) from timm.models.layers import DropPath, Mlp self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) self.window_size = window_size self.use_residual_block = use_residual_block if use_residual_block: # Use a residual block with bottleneck channel as dim // 2 self.residual = ResBottleneckBlock( in_channels=dim, out_channels=dim, bottleneck_channels=dim // 2, norm="LN", act_layer=act_layer, ) def forward(self, x): shortcut = x x = self.norm1(x) # Window partition if self.window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, self.window_size) x = self.attn(x) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, self.window_size, pad_hw, (H, W)) x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) if self.use_residual_block: x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) return x class ViT(Backbone): """ This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`. "Exploring Plain Vision Transformer Backbones for Object Detection", https://arxiv.org/abs/2203.16527 """ def __init__( self, img_size=1024, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, drop_path_rate=0.0, norm_layer=nn.LayerNorm, act_layer=nn.GELU, use_abs_pos=True, use_rel_pos=False, rel_pos_zero_init=True, window_size=0, window_block_indexes=(), residual_block_indexes=(), use_act_checkpoint=False, pretrain_img_size=224, pretrain_use_cls_token=True, out_feature="last_feat", ): """ Args: img_size (int): Input image size. patch_size (int): Patch size. in_chans (int): Number of input image channels. embed_dim (int): Patch embedding dimension. depth (int): Depth of ViT. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. drop_path_rate (float): Stochastic depth rate. norm_layer (nn.Module): Normalization layer. act_layer (nn.Module): Activation layer. use_abs_pos (bool): If True, use absolute positional embeddings. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. window_block_indexes (list): Indexes for blocks using window attention. residual_block_indexes (list): Indexes for blocks using conv propagation. use_act_checkpoint (bool): If True, use activation checkpointing. pretrain_img_size (int): input image size for pretraining models. pretrain_use_cls_token (bool): If True, pretrainig models use class token. out_feature (str): name of the feature from the last block. """ super().__init__() self.pretrain_use_cls_token = pretrain_use_cls_token self.patch_embed = PatchEmbed( kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), in_chans=in_chans, embed_dim=embed_dim, ) if use_abs_pos: # Initialize absolute positional embedding with pretrain image size. num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size) num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) else: self.pos_embed = None # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] self.blocks = nn.ModuleList() for i in range(depth): block = Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, window_size=window_size if i in window_block_indexes else 0, use_residual_block=i in residual_block_indexes, input_size=(img_size // patch_size, img_size // patch_size), ) if use_act_checkpoint: # TODO: use torch.utils.checkpoint from fairscale.nn.checkpoint import checkpoint_wrapper block = checkpoint_wrapper(block) self.blocks.append(block) self._out_feature_channels = {out_feature: embed_dim} self._out_feature_strides = {out_feature: patch_size} self._out_features = [out_feature] if self.pos_embed is not None: nn.init.trunc_normal_(self.pos_embed, std=0.02) # In our method, we don't use backbone feature with stride 4 self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim // 2, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.MaxPool2d(kernel_size=2, stride=2) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): x = self.patch_embed(x) if self.pos_embed is not None: x = x + get_abs_pos( self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2]) ) for blk in self.blocks: x = blk(x) xp = x.permute(0, 3, 1, 2) # (b, h, w, c) --> (b, c, h, w) features = [] ops = [self.fpn1, self.fpn2, self.fpn3] for i in range(len(ops)): features.append(ops[i](xp)) rets = {"res{}".format(u + 3): v for (u,v) in enumerate(features)} return rets @BACKBONE_REGISTRY.register() class D2ViT(ViT, Backbone): def __init__(self, cfg, input_shape): use_checkpoint = cfg.MODEL.VIT.USE_CHECKPOINT if cfg.MODEL.VIT.NAME == "ViT-Base": embed_dim=768 depth=12 drop_path_rate=0.1 num_heads=12 elif cfg.MODEL.VIT.NAME == "ViT-Large": embed_dim=1024 depth=24 drop_path_rate=0.4 num_heads=16 elif cfg.MODEL.VIT.NAME == "ViT-huge": embed_dim=1280 depth=32 drop_path_rate=0.5 num_heads=16 else: raise ValueError("Unsupported ViT name") super().__init__( img_size=1024, patch_size=16, in_chans=input_shape.channels, embed_dim=embed_dim, depth=depth, num_heads=num_heads, drop_path_rate=drop_path_rate, window_size=14, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), window_block_indexes=[ # 2, 5, 8 11 for global attention 0, 1, 3, 4, 6, 7, 9, 10, ], residual_block_indexes=[], use_rel_pos=True, out_feature="last_feat", use_act_checkpoint=use_checkpoint) self._out_features = cfg.MODEL.VIT.OUT_FEATURES self._out_feature_strides = { "res3": 8, "res4": 16, "res5": 32, } self._out_feature_channels = { "res3": embed_dim // 2, "res4": embed_dim, "res5": embed_dim, } def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ assert ( x.dim() == 4 ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" outputs = {} y = super().forward(x) for k in y.keys(): if k in self._out_features: outputs[k] = y[k] return outputs def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } @property def size_divisibility(self): return 32