Spaces:
Running
Running
import gradio as gr | |
from text2tags import TaggerLlama | |
model = TaggerLlama() | |
def predict(caption, max_tokens=128, temperature=0.8, top_k=40, top_p=0.95, repeat_penalty=1.1): | |
tags = model.predict_tags(caption, max_tokens=max_tokens, temperature=temperature, | |
top_k=top_k, top_p=top_p, repeat_penalty=repeat_penalty) | |
return ', '.join(tags) | |
description = """ | |
### Enter a caption to extract danbooru tags from it. | |
This space is duplicated from [ooferdoodles/text2tags-demo](https://huggingface.co./spaces/ooferdoodles/text2tags-demo) | |
""" | |
demo = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Textbox(label="Caption"), | |
gr.Slider(0, 256, step=16, value=128, label='max_tokens'), | |
gr.Slider(0, 2, step=0.1, value=0.8, label='temperature'), | |
gr.Slider(0, 100, step=5, value=40, label='top_k'), | |
gr.Slider(0, 2, step=0.05, value=0.95, label='top_p'), | |
gr.Slider(0, 5, step=0.1, value=1.1, label='repeat_penalty'), | |
], | |
outputs="text", | |
title="Text2Tags", | |
description=description, | |
examples=[ | |
["Minato Aqua from hololive with pink and blue twintails in a blue maid outfit"], | |
], | |
allow_flagging="never" | |
) | |
demo.launch() | |