import gradio as gr from text2tags import TaggerLlama model = TaggerLlama() def predict(caption, max_tokens=128, temperature=0.8, top_k=40, top_p=0.95, repeat_penalty=1.1): tags = model.predict_tags(caption, max_tokens=max_tokens, temperature=temperature, top_k=top_k, top_p=top_p, repeat_penalty=repeat_penalty) return ', '.join(tags) description = """ ### Enter a caption to extract danbooru tags from it. This space is duplicated from [ooferdoodles/text2tags-demo](https://huggingface.co./spaces/ooferdoodles/text2tags-demo) """ demo = gr.Interface( fn=predict, inputs=[ gr.Textbox(label="Caption"), gr.Slider(0, 256, step=16, value=128, label='max_tokens'), gr.Slider(0, 2, step=0.1, value=0.8, label='temperature'), gr.Slider(0, 100, step=5, value=40, label='top_k'), gr.Slider(0, 2, step=0.05, value=0.95, label='top_p'), gr.Slider(0, 5, step=0.1, value=1.1, label='repeat_penalty'), ], outputs="text", title="Text2Tags", description=description, examples=[ ["Minato Aqua from hololive with pink and blue twintails in a blue maid outfit"], ], allow_flagging="never" ) demo.launch()