Spaces:
Running
Running
File size: 5,903 Bytes
790731d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import base64
import os
import streamlit as st
from langchain.chains import RetrievalQA
from langchain.document_loaders import PDFMinerLoader
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from streamlit_chat import message
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
import torch
st.set_page_config(layout="wide")
def process_answer(instruction, qa_chain):
response = ''
generated_text = qa_chain.run(instruction)
return generated_text
def get_file_size(file):
file.seek(0, os.SEEK_END)
file_size = file.tell()
file.seek(0)
return file_size
@st.cache_resource
def data_ingestion():
for root, dirs, files in os.walk("docs"):
for file in files:
if file.endswith(".pdf"):
print(file)
loader = PDFMinerLoader(os.path.join(root, file))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
splits = text_splitter.split_documents(documents)
# create embeddings here
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = FAISS.from_documents(splits, embeddings)
vectordb.save_local("faiss_index")
@st.cache_resource
def initialize_qa_chain(selected_model):
# Constants
CHECKPOINT = selected_model
TOKENIZER = AutoTokenizer.from_pretrained(CHECKPOINT)
BASE_MODEL = AutoModelForSeq2SeqLM.from_pretrained(CHECKPOINT, device_map=torch.device('cpu'), torch_dtype=torch.float32)
pipe = pipeline(
'text2text-generation',
model=BASE_MODEL,
tokenizer=TOKENIZER,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95,
# device=torch.device('cpu')
)
llm = HuggingFacePipeline(pipeline=pipe)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = FAISS.load_local("faiss_index", embeddings)
# Build a QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectordb.as_retriever(),
)
return qa_chain
@st.cache_data
# function to display the PDF of a given file
def display_pdf(file):
try:
# Opening file from file path
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# Embedding PDF in HTML
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
# Displaying File
st.markdown(pdf_display, unsafe_allow_html=True)
except Exception as e:
st.error(f"An error occurred while displaying the PDF: {e}")
# Display conversation history using Streamlit messages
def display_conversation(history):
for i in range(len(history["generated"])):
message(history["past"][i], is_user=True, key=f"{i}_user")
message(history["generated"][i], key=str(i))
def main():
# Add a sidebar for model selection
model_options = ["MBZUAI/LaMini-T5-738M", "google/flan-t5-base", "google/flan-t5-small"]
selected_model = st.sidebar.selectbox("Select Model", model_options)
st.markdown("<h1 style='text-align: center; color: blue;'>Custom PDF Chatbot π¦π </h1>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center; color:red;'>Upload your PDF, and Ask Questions π</h2>", unsafe_allow_html=True)
uploaded_file = st.file_uploader("", type=["pdf"])
if uploaded_file is not None:
file_details = {
"Filename": uploaded_file.name,
"File size": get_file_size(uploaded_file)
}
os.makedirs("docs", exist_ok=True)
filepath = os.path.join("docs", uploaded_file.name)
try:
with open(filepath, "wb") as temp_file:
temp_file.write(uploaded_file.read())
col1, col2 = st.columns([1, 2])
with col1:
st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
st.json(file_details)
st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
pdf_view = display_pdf(filepath)
with col2:
st.success(f'model selected successfully: {selected_model}')
with st.spinner('Embeddings are in process...'):
ingested_data = data_ingestion()
st.success('Embeddings are created successfully!')
st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True)
user_input = st.text_input("", key="input")
# Initialize session state for generated responses and past messages
if "generated" not in st.session_state:
st.session_state["generated"] = ["I am ready to help you"]
if "past" not in st.session_state:
st.session_state["past"] = ["Hey there!"]
# Search the database for a response based on user input and update session state
if user_input:
answer = process_answer({'query': user_input}, initialize_qa_chain(selected_model))
st.session_state["past"].append(user_input)
response = answer
st.session_state["generated"].append(response)
# Display conversation history using Streamlit messages
if st.session_state["generated"]:
display_conversation(st.session_state)
except Exception as e:
st.error(f"An error occurred: {e}")
if __name__ == "__main__":
main()
|