JanLukasB commited on
Commit
790731d
β€’
1 Parent(s): 9f9843c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +162 -0
app.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import os
3
+
4
+ import streamlit as st
5
+ from langchain.chains import RetrievalQA
6
+ from langchain.document_loaders import PDFMinerLoader
7
+ from langchain.embeddings import SentenceTransformerEmbeddings
8
+ from langchain.llms import HuggingFacePipeline
9
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
10
+ from langchain.vectorstores import FAISS
11
+ from streamlit_chat import message
12
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
13
+ import torch
14
+
15
+ st.set_page_config(layout="wide")
16
+
17
+ def process_answer(instruction, qa_chain):
18
+ response = ''
19
+ generated_text = qa_chain.run(instruction)
20
+ return generated_text
21
+
22
+
23
+ def get_file_size(file):
24
+ file.seek(0, os.SEEK_END)
25
+ file_size = file.tell()
26
+ file.seek(0)
27
+ return file_size
28
+
29
+
30
+ @st.cache_resource
31
+ def data_ingestion():
32
+ for root, dirs, files in os.walk("docs"):
33
+ for file in files:
34
+ if file.endswith(".pdf"):
35
+ print(file)
36
+ loader = PDFMinerLoader(os.path.join(root, file))
37
+
38
+ documents = loader.load()
39
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
40
+ splits = text_splitter.split_documents(documents)
41
+
42
+ # create embeddings here
43
+ embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
44
+ vectordb = FAISS.from_documents(splits, embeddings)
45
+ vectordb.save_local("faiss_index")
46
+
47
+
48
+ @st.cache_resource
49
+ def initialize_qa_chain(selected_model):
50
+ # Constants
51
+ CHECKPOINT = selected_model
52
+ TOKENIZER = AutoTokenizer.from_pretrained(CHECKPOINT)
53
+ BASE_MODEL = AutoModelForSeq2SeqLM.from_pretrained(CHECKPOINT, device_map=torch.device('cpu'), torch_dtype=torch.float32)
54
+ pipe = pipeline(
55
+ 'text2text-generation',
56
+ model=BASE_MODEL,
57
+ tokenizer=TOKENIZER,
58
+ max_length=256,
59
+ do_sample=True,
60
+ temperature=0.3,
61
+ top_p=0.95,
62
+ # device=torch.device('cpu')
63
+ )
64
+
65
+ llm = HuggingFacePipeline(pipeline=pipe)
66
+ embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
67
+
68
+ vectordb = FAISS.load_local("faiss_index", embeddings)
69
+
70
+ # Build a QA chain
71
+ qa_chain = RetrievalQA.from_chain_type(
72
+ llm=llm,
73
+ chain_type="stuff",
74
+ retriever=vectordb.as_retriever(),
75
+ )
76
+ return qa_chain
77
+
78
+
79
+ @st.cache_data
80
+ # function to display the PDF of a given file
81
+ def display_pdf(file):
82
+ try:
83
+ # Opening file from file path
84
+ with open(file, "rb") as f:
85
+ base64_pdf = base64.b64encode(f.read()).decode('utf-8')
86
+
87
+ # Embedding PDF in HTML
88
+ pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
89
+
90
+ # Displaying File
91
+ st.markdown(pdf_display, unsafe_allow_html=True)
92
+ except Exception as e:
93
+ st.error(f"An error occurred while displaying the PDF: {e}")
94
+
95
+
96
+ # Display conversation history using Streamlit messages
97
+ def display_conversation(history):
98
+ for i in range(len(history["generated"])):
99
+ message(history["past"][i], is_user=True, key=f"{i}_user")
100
+ message(history["generated"][i], key=str(i))
101
+
102
+
103
+ def main():
104
+ # Add a sidebar for model selection
105
+ model_options = ["MBZUAI/LaMini-T5-738M", "google/flan-t5-base", "google/flan-t5-small"]
106
+ selected_model = st.sidebar.selectbox("Select Model", model_options)
107
+
108
+ st.markdown("<h1 style='text-align: center; color: blue;'>Custom PDF Chatbot πŸ¦œπŸ“„ </h1>", unsafe_allow_html=True)
109
+ st.markdown("<h2 style='text-align: center; color:red;'>Upload your PDF, and Ask Questions πŸ‘‡</h2>", unsafe_allow_html=True)
110
+
111
+ uploaded_file = st.file_uploader("", type=["pdf"])
112
+
113
+ if uploaded_file is not None:
114
+ file_details = {
115
+ "Filename": uploaded_file.name,
116
+ "File size": get_file_size(uploaded_file)
117
+ }
118
+ os.makedirs("docs", exist_ok=True)
119
+ filepath = os.path.join("docs", uploaded_file.name)
120
+ try:
121
+ with open(filepath, "wb") as temp_file:
122
+ temp_file.write(uploaded_file.read())
123
+
124
+ col1, col2 = st.columns([1, 2])
125
+ with col1:
126
+ st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
127
+ st.json(file_details)
128
+ st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
129
+ pdf_view = display_pdf(filepath)
130
+
131
+ with col2:
132
+ st.success(f'model selected successfully: {selected_model}')
133
+ with st.spinner('Embeddings are in process...'):
134
+ ingested_data = data_ingestion()
135
+ st.success('Embeddings are created successfully!')
136
+ st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True)
137
+
138
+ user_input = st.text_input("", key="input")
139
+
140
+ # Initialize session state for generated responses and past messages
141
+ if "generated" not in st.session_state:
142
+ st.session_state["generated"] = ["I am ready to help you"]
143
+ if "past" not in st.session_state:
144
+ st.session_state["past"] = ["Hey there!"]
145
+
146
+ # Search the database for a response based on user input and update session state
147
+ if user_input:
148
+ answer = process_answer({'query': user_input}, initialize_qa_chain(selected_model))
149
+ st.session_state["past"].append(user_input)
150
+ response = answer
151
+ st.session_state["generated"].append(response)
152
+
153
+ # Display conversation history using Streamlit messages
154
+ if st.session_state["generated"]:
155
+ display_conversation(st.session_state)
156
+
157
+ except Exception as e:
158
+ st.error(f"An error occurred: {e}")
159
+
160
+
161
+ if __name__ == "__main__":
162
+ main()