Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Kakao Brain and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from typing import List, Optional, Union | |
import PIL.Image | |
import torch | |
from torch.nn import functional as F | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionModelWithProjection, | |
) | |
from ...models import UNet2DConditionModel, UNet2DModel | |
from ...schedulers import UnCLIPScheduler | |
from ...utils import logging | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from .text_proj import UnCLIPTextProjModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UnCLIPImageVariationPipeline(DiffusionPipeline): | |
""" | |
Pipeline to generate image variations from an input image using UnCLIP. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Args: | |
text_encoder ([`~transformers.CLIPTextModelWithProjection`]): | |
Frozen text-encoder. | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `image_encoder`. | |
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): | |
Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)). | |
text_proj ([`UnCLIPTextProjModel`]): | |
Utility class to prepare and combine the embeddings before they are passed to the decoder. | |
decoder ([`UNet2DConditionModel`]): | |
The decoder to invert the image embedding into an image. | |
super_res_first ([`UNet2DModel`]): | |
Super resolution UNet. Used in all but the last step of the super resolution diffusion process. | |
super_res_last ([`UNet2DModel`]): | |
Super resolution UNet. Used in the last step of the super resolution diffusion process. | |
decoder_scheduler ([`UnCLIPScheduler`]): | |
Scheduler used in the decoder denoising process (a modified [`DDPMScheduler`]). | |
super_res_scheduler ([`UnCLIPScheduler`]): | |
Scheduler used in the super resolution denoising process (a modified [`DDPMScheduler`]). | |
""" | |
decoder: UNet2DConditionModel | |
text_proj: UnCLIPTextProjModel | |
text_encoder: CLIPTextModelWithProjection | |
tokenizer: CLIPTokenizer | |
feature_extractor: CLIPImageProcessor | |
image_encoder: CLIPVisionModelWithProjection | |
super_res_first: UNet2DModel | |
super_res_last: UNet2DModel | |
decoder_scheduler: UnCLIPScheduler | |
super_res_scheduler: UnCLIPScheduler | |
model_cpu_offload_seq = "text_encoder->image_encoder->text_proj->decoder->super_res_first->super_res_last" | |
def __init__( | |
self, | |
decoder: UNet2DConditionModel, | |
text_encoder: CLIPTextModelWithProjection, | |
tokenizer: CLIPTokenizer, | |
text_proj: UnCLIPTextProjModel, | |
feature_extractor: CLIPImageProcessor, | |
image_encoder: CLIPVisionModelWithProjection, | |
super_res_first: UNet2DModel, | |
super_res_last: UNet2DModel, | |
decoder_scheduler: UnCLIPScheduler, | |
super_res_scheduler: UnCLIPScheduler, | |
): | |
super().__init__() | |
self.register_modules( | |
decoder=decoder, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_proj=text_proj, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
super_res_first=super_res_first, | |
super_res_last=super_res_last, | |
decoder_scheduler=decoder_scheduler, | |
super_res_scheduler=super_res_scheduler, | |
) | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
return latents | |
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
# get prompt text embeddings | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
text_mask = text_inputs.attention_mask.bool().to(device) | |
text_encoder_output = self.text_encoder(text_input_ids.to(device)) | |
prompt_embeds = text_encoder_output.text_embeds | |
text_encoder_hidden_states = text_encoder_output.last_hidden_state | |
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
uncond_tokens = [""] * batch_size | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
uncond_text_mask = uncond_input.attention_mask.bool().to(device) | |
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) | |
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds | |
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) | |
seq_len = uncond_text_encoder_hidden_states.shape[1] | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
# done duplicates | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) | |
text_mask = torch.cat([uncond_text_mask, text_mask]) | |
return prompt_embeds, text_encoder_hidden_states, text_mask | |
def _encode_image(self, image, device, num_images_per_prompt, image_embeddings: Optional[torch.Tensor] = None): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if image_embeddings is None: | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
image_embeddings = self.image_encoder(image).image_embeds | |
image_embeddings = image_embeddings.repeat_interleave(num_images_per_prompt, dim=0) | |
return image_embeddings | |
def __call__( | |
self, | |
image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]] = None, | |
num_images_per_prompt: int = 1, | |
decoder_num_inference_steps: int = 25, | |
super_res_num_inference_steps: int = 7, | |
generator: Optional[torch.Generator] = None, | |
decoder_latents: Optional[torch.FloatTensor] = None, | |
super_res_latents: Optional[torch.FloatTensor] = None, | |
image_embeddings: Optional[torch.Tensor] = None, | |
decoder_guidance_scale: float = 8.0, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
): | |
""" | |
The call function to the pipeline for generation. | |
Args: | |
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): | |
`Image` or tensor representing an image batch to be used as the starting point. If you provide a | |
tensor, it needs to be compatible with the [`CLIPImageProcessor`] | |
[configuration](https://huggingface.co./fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). | |
Can be left as `None` only when `image_embeddings` are passed. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
decoder_num_inference_steps (`int`, *optional*, defaults to 25): | |
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality | |
image at the expense of slower inference. | |
super_res_num_inference_steps (`int`, *optional*, defaults to 7): | |
The number of denoising steps for super resolution. More denoising steps usually lead to a higher | |
quality image at the expense of slower inference. | |
generator (`torch.Generator`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*): | |
Pre-generated noisy latents to be used as inputs for the decoder. | |
super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*): | |
Pre-generated noisy latents to be used as inputs for the decoder. | |
decoder_guidance_scale (`float`, *optional*, defaults to 4.0): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
image_embeddings (`torch.Tensor`, *optional*): | |
Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings | |
can be passed for tasks like image interpolations. `image` can be left as `None`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images. | |
""" | |
if image is not None: | |
if isinstance(image, PIL.Image.Image): | |
batch_size = 1 | |
elif isinstance(image, list): | |
batch_size = len(image) | |
else: | |
batch_size = image.shape[0] | |
else: | |
batch_size = image_embeddings.shape[0] | |
prompt = [""] * batch_size | |
device = self._execution_device | |
batch_size = batch_size * num_images_per_prompt | |
do_classifier_free_guidance = decoder_guidance_scale > 1.0 | |
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( | |
prompt, device, num_images_per_prompt, do_classifier_free_guidance | |
) | |
image_embeddings = self._encode_image(image, device, num_images_per_prompt, image_embeddings) | |
# decoder | |
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( | |
image_embeddings=image_embeddings, | |
prompt_embeds=prompt_embeds, | |
text_encoder_hidden_states=text_encoder_hidden_states, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
if device.type == "mps": | |
# HACK: MPS: There is a panic when padding bool tensors, | |
# so cast to int tensor for the pad and back to bool afterwards | |
text_mask = text_mask.type(torch.int) | |
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) | |
decoder_text_mask = decoder_text_mask.type(torch.bool) | |
else: | |
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) | |
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) | |
decoder_timesteps_tensor = self.decoder_scheduler.timesteps | |
num_channels_latents = self.decoder.config.in_channels | |
height = self.decoder.config.sample_size | |
width = self.decoder.config.sample_size | |
if decoder_latents is None: | |
decoder_latents = self.prepare_latents( | |
(batch_size, num_channels_latents, height, width), | |
text_encoder_hidden_states.dtype, | |
device, | |
generator, | |
decoder_latents, | |
self.decoder_scheduler, | |
) | |
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents | |
noise_pred = self.decoder( | |
sample=latent_model_input, | |
timestep=t, | |
encoder_hidden_states=text_encoder_hidden_states, | |
class_labels=additive_clip_time_embeddings, | |
attention_mask=decoder_text_mask, | |
).sample | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) | |
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) | |
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) | |
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) | |
if i + 1 == decoder_timesteps_tensor.shape[0]: | |
prev_timestep = None | |
else: | |
prev_timestep = decoder_timesteps_tensor[i + 1] | |
# compute the previous noisy sample x_t -> x_t-1 | |
decoder_latents = self.decoder_scheduler.step( | |
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator | |
).prev_sample | |
decoder_latents = decoder_latents.clamp(-1, 1) | |
image_small = decoder_latents | |
# done decoder | |
# super res | |
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) | |
super_res_timesteps_tensor = self.super_res_scheduler.timesteps | |
channels = self.super_res_first.config.in_channels // 2 | |
height = self.super_res_first.config.sample_size | |
width = self.super_res_first.config.sample_size | |
if super_res_latents is None: | |
super_res_latents = self.prepare_latents( | |
(batch_size, channels, height, width), | |
image_small.dtype, | |
device, | |
generator, | |
super_res_latents, | |
self.super_res_scheduler, | |
) | |
if device.type == "mps": | |
# MPS does not support many interpolations | |
image_upscaled = F.interpolate(image_small, size=[height, width]) | |
else: | |
interpolate_antialias = {} | |
if "antialias" in inspect.signature(F.interpolate).parameters: | |
interpolate_antialias["antialias"] = True | |
image_upscaled = F.interpolate( | |
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias | |
) | |
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): | |
# no classifier free guidance | |
if i == super_res_timesteps_tensor.shape[0] - 1: | |
unet = self.super_res_last | |
else: | |
unet = self.super_res_first | |
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) | |
noise_pred = unet( | |
sample=latent_model_input, | |
timestep=t, | |
).sample | |
if i + 1 == super_res_timesteps_tensor.shape[0]: | |
prev_timestep = None | |
else: | |
prev_timestep = super_res_timesteps_tensor[i + 1] | |
# compute the previous noisy sample x_t -> x_t-1 | |
super_res_latents = self.super_res_scheduler.step( | |
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator | |
).prev_sample | |
image = super_res_latents | |
# done super res | |
self.maybe_free_model_hooks() | |
# post processing | |
image = image * 0.5 + 0.5 | |
image = image.clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |