File size: 19,072 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Copyright 2024 Kakao Brain and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import List, Optional, Union

import PIL.Image
import torch
from torch.nn import functional as F
from transformers import (
    CLIPImageProcessor,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from ...models import UNet2DConditionModel, UNet2DModel
from ...schedulers import UnCLIPScheduler
from ...utils import logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .text_proj import UnCLIPTextProjModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class UnCLIPImageVariationPipeline(DiffusionPipeline):
    """
    Pipeline to generate image variations from an input image using UnCLIP.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        text_encoder ([`~transformers.CLIPTextModelWithProjection`]):
            Frozen text-encoder.
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            Model that extracts features from generated images to be used as inputs for the `image_encoder`.
        image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
            Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)).
        text_proj ([`UnCLIPTextProjModel`]):
            Utility class to prepare and combine the embeddings before they are passed to the decoder.
        decoder ([`UNet2DConditionModel`]):
            The decoder to invert the image embedding into an image.
        super_res_first ([`UNet2DModel`]):
            Super resolution UNet. Used in all but the last step of the super resolution diffusion process.
        super_res_last ([`UNet2DModel`]):
            Super resolution UNet. Used in the last step of the super resolution diffusion process.
        decoder_scheduler ([`UnCLIPScheduler`]):
            Scheduler used in the decoder denoising process (a modified [`DDPMScheduler`]).
        super_res_scheduler ([`UnCLIPScheduler`]):
            Scheduler used in the super resolution denoising process (a modified [`DDPMScheduler`]).
    """

    decoder: UNet2DConditionModel
    text_proj: UnCLIPTextProjModel
    text_encoder: CLIPTextModelWithProjection
    tokenizer: CLIPTokenizer
    feature_extractor: CLIPImageProcessor
    image_encoder: CLIPVisionModelWithProjection
    super_res_first: UNet2DModel
    super_res_last: UNet2DModel

    decoder_scheduler: UnCLIPScheduler
    super_res_scheduler: UnCLIPScheduler
    model_cpu_offload_seq = "text_encoder->image_encoder->text_proj->decoder->super_res_first->super_res_last"

    def __init__(
        self,
        decoder: UNet2DConditionModel,
        text_encoder: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        text_proj: UnCLIPTextProjModel,
        feature_extractor: CLIPImageProcessor,
        image_encoder: CLIPVisionModelWithProjection,
        super_res_first: UNet2DModel,
        super_res_last: UNet2DModel,
        decoder_scheduler: UnCLIPScheduler,
        super_res_scheduler: UnCLIPScheduler,
    ):
        super().__init__()

        self.register_modules(
            decoder=decoder,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_proj=text_proj,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
            super_res_first=super_res_first,
            super_res_last=super_res_last,
            decoder_scheduler=decoder_scheduler,
            super_res_scheduler=super_res_scheduler,
        )

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance):
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        # get prompt text embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        text_mask = text_inputs.attention_mask.bool().to(device)
        text_encoder_output = self.text_encoder(text_input_ids.to(device))

        prompt_embeds = text_encoder_output.text_embeds
        text_encoder_hidden_states = text_encoder_output.last_hidden_state

        prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
        text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
        text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)

        if do_classifier_free_guidance:
            uncond_tokens = [""] * batch_size

            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )
            uncond_text_mask = uncond_input.attention_mask.bool().to(device)
            negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))

            negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
            uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method

            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)

            seq_len = uncond_text_encoder_hidden_states.shape[1]
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
            uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)

            # done duplicates

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])

            text_mask = torch.cat([uncond_text_mask, text_mask])

        return prompt_embeds, text_encoder_hidden_states, text_mask

    def _encode_image(self, image, device, num_images_per_prompt, image_embeddings: Optional[torch.Tensor] = None):
        dtype = next(self.image_encoder.parameters()).dtype

        if image_embeddings is None:
            if not isinstance(image, torch.Tensor):
                image = self.feature_extractor(images=image, return_tensors="pt").pixel_values

            image = image.to(device=device, dtype=dtype)
            image_embeddings = self.image_encoder(image).image_embeds

        image_embeddings = image_embeddings.repeat_interleave(num_images_per_prompt, dim=0)

        return image_embeddings

    @torch.no_grad()
    def __call__(
        self,
        image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]] = None,
        num_images_per_prompt: int = 1,
        decoder_num_inference_steps: int = 25,
        super_res_num_inference_steps: int = 7,
        generator: Optional[torch.Generator] = None,
        decoder_latents: Optional[torch.FloatTensor] = None,
        super_res_latents: Optional[torch.FloatTensor] = None,
        image_embeddings: Optional[torch.Tensor] = None,
        decoder_guidance_scale: float = 8.0,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ):
        """
        The call function to the pipeline for generation.

        Args:
            image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
                `Image` or tensor representing an image batch to be used as the starting point. If you provide a
                tensor, it needs to be compatible with the [`CLIPImageProcessor`]
                [configuration](https://huggingface.co./fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
                Can be left as `None` only when `image_embeddings` are passed.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            decoder_num_inference_steps (`int`, *optional*, defaults to 25):
                The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
                image at the expense of slower inference.
            super_res_num_inference_steps (`int`, *optional*, defaults to 7):
                The number of denoising steps for super resolution. More denoising steps usually lead to a higher
                quality image at the expense of slower inference.
            generator (`torch.Generator`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*):
                Pre-generated noisy latents to be used as inputs for the decoder.
            super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*):
                Pre-generated noisy latents to be used as inputs for the decoder.
            decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            image_embeddings (`torch.Tensor`, *optional*):
                Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings
                can be passed for tasks like image interpolations. `image` can be left as `None`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images.
        """
        if image is not None:
            if isinstance(image, PIL.Image.Image):
                batch_size = 1
            elif isinstance(image, list):
                batch_size = len(image)
            else:
                batch_size = image.shape[0]
        else:
            batch_size = image_embeddings.shape[0]

        prompt = [""] * batch_size

        device = self._execution_device

        batch_size = batch_size * num_images_per_prompt

        do_classifier_free_guidance = decoder_guidance_scale > 1.0

        prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
            prompt, device, num_images_per_prompt, do_classifier_free_guidance
        )

        image_embeddings = self._encode_image(image, device, num_images_per_prompt, image_embeddings)

        # decoder
        text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
            image_embeddings=image_embeddings,
            prompt_embeds=prompt_embeds,
            text_encoder_hidden_states=text_encoder_hidden_states,
            do_classifier_free_guidance=do_classifier_free_guidance,
        )

        if device.type == "mps":
            # HACK: MPS: There is a panic when padding bool tensors,
            # so cast to int tensor for the pad and back to bool afterwards
            text_mask = text_mask.type(torch.int)
            decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1)
            decoder_text_mask = decoder_text_mask.type(torch.bool)
        else:
            decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True)

        self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device)
        decoder_timesteps_tensor = self.decoder_scheduler.timesteps

        num_channels_latents = self.decoder.config.in_channels
        height = self.decoder.config.sample_size
        width = self.decoder.config.sample_size

        if decoder_latents is None:
            decoder_latents = self.prepare_latents(
                (batch_size, num_channels_latents, height, width),
                text_encoder_hidden_states.dtype,
                device,
                generator,
                decoder_latents,
                self.decoder_scheduler,
            )

        for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents

            noise_pred = self.decoder(
                sample=latent_model_input,
                timestep=t,
                encoder_hidden_states=text_encoder_hidden_states,
                class_labels=additive_clip_time_embeddings,
                attention_mask=decoder_text_mask,
            ).sample

            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1)
                noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1)
                noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
                noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)

            if i + 1 == decoder_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = decoder_timesteps_tensor[i + 1]

            # compute the previous noisy sample x_t -> x_t-1
            decoder_latents = self.decoder_scheduler.step(
                noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
            ).prev_sample

        decoder_latents = decoder_latents.clamp(-1, 1)

        image_small = decoder_latents

        # done decoder

        # super res

        self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device)
        super_res_timesteps_tensor = self.super_res_scheduler.timesteps

        channels = self.super_res_first.config.in_channels // 2
        height = self.super_res_first.config.sample_size
        width = self.super_res_first.config.sample_size

        if super_res_latents is None:
            super_res_latents = self.prepare_latents(
                (batch_size, channels, height, width),
                image_small.dtype,
                device,
                generator,
                super_res_latents,
                self.super_res_scheduler,
            )

        if device.type == "mps":
            # MPS does not support many interpolations
            image_upscaled = F.interpolate(image_small, size=[height, width])
        else:
            interpolate_antialias = {}
            if "antialias" in inspect.signature(F.interpolate).parameters:
                interpolate_antialias["antialias"] = True

            image_upscaled = F.interpolate(
                image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
            )

        for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
            # no classifier free guidance

            if i == super_res_timesteps_tensor.shape[0] - 1:
                unet = self.super_res_last
            else:
                unet = self.super_res_first

            latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1)

            noise_pred = unet(
                sample=latent_model_input,
                timestep=t,
            ).sample

            if i + 1 == super_res_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = super_res_timesteps_tensor[i + 1]

            # compute the previous noisy sample x_t -> x_t-1
            super_res_latents = self.super_res_scheduler.step(
                noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
            ).prev_sample

        image = super_res_latents

        # done super res
        self.maybe_free_model_hooks()

        # post processing

        image = image * 0.5 + 0.5
        image = image.clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)