Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import BaseOutput | |
from .scheduling_utils import SchedulerMixin | |
def gumbel_noise(t, generator=None): | |
device = generator.device if generator is not None else t.device | |
noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device) | |
return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20)) | |
def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None): | |
confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator) | |
sorted_confidence = torch.sort(confidence, dim=-1).values | |
cut_off = torch.gather(sorted_confidence, 1, mask_len.long()) | |
masking = confidence < cut_off | |
return masking | |
class AmusedSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's `step` function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.FloatTensor | |
pred_original_sample: torch.FloatTensor = None | |
class AmusedScheduler(SchedulerMixin, ConfigMixin): | |
order = 1 | |
temperatures: torch.Tensor | |
def __init__( | |
self, | |
mask_token_id: int, | |
masking_schedule: str = "cosine", | |
): | |
self.temperatures = None | |
self.timesteps = None | |
def set_timesteps( | |
self, | |
num_inference_steps: int, | |
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0), | |
device: Union[str, torch.device] = None, | |
): | |
self.timesteps = torch.arange(num_inference_steps, device=device).flip(0) | |
if isinstance(temperature, (tuple, list)): | |
self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device) | |
else: | |
self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device) | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: torch.long, | |
sample: torch.LongTensor, | |
starting_mask_ratio: int = 1, | |
generator: Optional[torch.Generator] = None, | |
return_dict: bool = True, | |
) -> Union[AmusedSchedulerOutput, Tuple]: | |
two_dim_input = sample.ndim == 3 and model_output.ndim == 4 | |
if two_dim_input: | |
batch_size, codebook_size, height, width = model_output.shape | |
sample = sample.reshape(batch_size, height * width) | |
model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1) | |
unknown_map = sample == self.config.mask_token_id | |
probs = model_output.softmax(dim=-1) | |
device = probs.device | |
probs_ = probs.to(generator.device) if generator is not None else probs # handles when generator is on CPU | |
if probs_.device.type == "cpu" and probs_.dtype != torch.float32: | |
probs_ = probs_.float() # multinomial is not implemented for cpu half precision | |
probs_ = probs_.reshape(-1, probs.size(-1)) | |
pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device) | |
pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1]) | |
pred_original_sample = torch.where(unknown_map, pred_original_sample, sample) | |
if timestep == 0: | |
prev_sample = pred_original_sample | |
else: | |
seq_len = sample.shape[1] | |
step_idx = (self.timesteps == timestep).nonzero() | |
ratio = (step_idx + 1) / len(self.timesteps) | |
if self.config.masking_schedule == "cosine": | |
mask_ratio = torch.cos(ratio * math.pi / 2) | |
elif self.config.masking_schedule == "linear": | |
mask_ratio = 1 - ratio | |
else: | |
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}") | |
mask_ratio = starting_mask_ratio * mask_ratio | |
mask_len = (seq_len * mask_ratio).floor() | |
# do not mask more than amount previously masked | |
mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len) | |
# mask at least one | |
mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len) | |
selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0] | |
# Ignores the tokens given in the input by overwriting their confidence. | |
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max) | |
masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator) | |
# Masks tokens with lower confidence. | |
prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample) | |
if two_dim_input: | |
prev_sample = prev_sample.reshape(batch_size, height, width) | |
pred_original_sample = pred_original_sample.reshape(batch_size, height, width) | |
if not return_dict: | |
return (prev_sample, pred_original_sample) | |
return AmusedSchedulerOutput(prev_sample, pred_original_sample) | |
def add_noise(self, sample, timesteps, generator=None): | |
step_idx = (self.timesteps == timesteps).nonzero() | |
ratio = (step_idx + 1) / len(self.timesteps) | |
if self.config.masking_schedule == "cosine": | |
mask_ratio = torch.cos(ratio * math.pi / 2) | |
elif self.config.masking_schedule == "linear": | |
mask_ratio = 1 - ratio | |
else: | |
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}") | |
mask_indices = ( | |
torch.rand( | |
sample.shape, device=generator.device if generator is not None else sample.device, generator=generator | |
).to(sample.device) | |
< mask_ratio | |
) | |
masked_sample = sample.clone() | |
masked_sample[mask_indices] = self.config.mask_token_id | |
return masked_sample | |