File size: 6,615 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin


def gumbel_noise(t, generator=None):
    device = generator.device if generator is not None else t.device
    noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device)
    return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20))


def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None):
    confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator)
    sorted_confidence = torch.sort(confidence, dim=-1).values
    cut_off = torch.gather(sorted_confidence, 1, mask_len.long())
    masking = confidence < cut_off
    return masking


@dataclass
class AmusedSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: torch.FloatTensor = None


class AmusedScheduler(SchedulerMixin, ConfigMixin):
    order = 1

    temperatures: torch.Tensor

    @register_to_config
    def __init__(
        self,
        mask_token_id: int,
        masking_schedule: str = "cosine",
    ):
        self.temperatures = None
        self.timesteps = None

    def set_timesteps(
        self,
        num_inference_steps: int,
        temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
        device: Union[str, torch.device] = None,
    ):
        self.timesteps = torch.arange(num_inference_steps, device=device).flip(0)

        if isinstance(temperature, (tuple, list)):
            self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device)
        else:
            self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device)

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: torch.long,
        sample: torch.LongTensor,
        starting_mask_ratio: int = 1,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[AmusedSchedulerOutput, Tuple]:
        two_dim_input = sample.ndim == 3 and model_output.ndim == 4

        if two_dim_input:
            batch_size, codebook_size, height, width = model_output.shape
            sample = sample.reshape(batch_size, height * width)
            model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1)

        unknown_map = sample == self.config.mask_token_id

        probs = model_output.softmax(dim=-1)

        device = probs.device
        probs_ = probs.to(generator.device) if generator is not None else probs  # handles when generator is on CPU
        if probs_.device.type == "cpu" and probs_.dtype != torch.float32:
            probs_ = probs_.float()  # multinomial is not implemented for cpu half precision
        probs_ = probs_.reshape(-1, probs.size(-1))
        pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device)
        pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1])
        pred_original_sample = torch.where(unknown_map, pred_original_sample, sample)

        if timestep == 0:
            prev_sample = pred_original_sample
        else:
            seq_len = sample.shape[1]
            step_idx = (self.timesteps == timestep).nonzero()
            ratio = (step_idx + 1) / len(self.timesteps)

            if self.config.masking_schedule == "cosine":
                mask_ratio = torch.cos(ratio * math.pi / 2)
            elif self.config.masking_schedule == "linear":
                mask_ratio = 1 - ratio
            else:
                raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")

            mask_ratio = starting_mask_ratio * mask_ratio

            mask_len = (seq_len * mask_ratio).floor()
            # do not mask more than amount previously masked
            mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
            # mask at least one
            mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len)

            selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0]
            # Ignores the tokens given in the input by overwriting their confidence.
            selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)

            masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator)

            # Masks tokens with lower confidence.
            prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample)

        if two_dim_input:
            prev_sample = prev_sample.reshape(batch_size, height, width)
            pred_original_sample = pred_original_sample.reshape(batch_size, height, width)

        if not return_dict:
            return (prev_sample, pred_original_sample)

        return AmusedSchedulerOutput(prev_sample, pred_original_sample)

    def add_noise(self, sample, timesteps, generator=None):
        step_idx = (self.timesteps == timesteps).nonzero()
        ratio = (step_idx + 1) / len(self.timesteps)

        if self.config.masking_schedule == "cosine":
            mask_ratio = torch.cos(ratio * math.pi / 2)
        elif self.config.masking_schedule == "linear":
            mask_ratio = 1 - ratio
        else:
            raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")

        mask_indices = (
            torch.rand(
                sample.shape, device=generator.device if generator is not None else sample.device, generator=generator
            ).to(sample.device)
            < mask_ratio
        )

        masked_sample = sample.clone()

        masked_sample[mask_indices] = self.config.mask_token_id

        return masked_sample