Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from huggingface_hub.utils import validate_hf_hub_args | |
from ..utils import is_transformers_available, logging | |
from .single_file_utils import ( | |
create_diffusers_unet_model_from_ldm, | |
create_diffusers_vae_model_from_ldm, | |
create_scheduler_from_ldm, | |
create_text_encoders_and_tokenizers_from_ldm, | |
fetch_ldm_config_and_checkpoint, | |
infer_model_type, | |
) | |
logger = logging.get_logger(__name__) | |
# Pipelines that support the SDXL Refiner checkpoint | |
REFINER_PIPELINES = [ | |
"StableDiffusionXLImg2ImgPipeline", | |
"StableDiffusionXLInpaintPipeline", | |
"StableDiffusionXLControlNetImg2ImgPipeline", | |
] | |
if is_transformers_available(): | |
from transformers import AutoFeatureExtractor | |
def build_sub_model_components( | |
pipeline_components, | |
pipeline_class_name, | |
component_name, | |
original_config, | |
checkpoint, | |
local_files_only=False, | |
load_safety_checker=False, | |
model_type=None, | |
image_size=None, | |
torch_dtype=None, | |
**kwargs, | |
): | |
if component_name in pipeline_components: | |
return {} | |
if component_name == "unet": | |
num_in_channels = kwargs.pop("num_in_channels", None) | |
upcast_attention = kwargs.pop("upcast_attention", None) | |
unet_components = create_diffusers_unet_model_from_ldm( | |
pipeline_class_name, | |
original_config, | |
checkpoint, | |
num_in_channels=num_in_channels, | |
image_size=image_size, | |
torch_dtype=torch_dtype, | |
model_type=model_type, | |
upcast_attention=upcast_attention, | |
) | |
return unet_components | |
if component_name == "vae": | |
scaling_factor = kwargs.get("scaling_factor", None) | |
vae_components = create_diffusers_vae_model_from_ldm( | |
pipeline_class_name, | |
original_config, | |
checkpoint, | |
image_size, | |
scaling_factor, | |
torch_dtype, | |
model_type=model_type, | |
) | |
return vae_components | |
if component_name == "scheduler": | |
scheduler_type = kwargs.get("scheduler_type", "ddim") | |
prediction_type = kwargs.get("prediction_type", None) | |
scheduler_components = create_scheduler_from_ldm( | |
pipeline_class_name, | |
original_config, | |
checkpoint, | |
scheduler_type=scheduler_type, | |
prediction_type=prediction_type, | |
model_type=model_type, | |
) | |
return scheduler_components | |
if component_name in ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]: | |
text_encoder_components = create_text_encoders_and_tokenizers_from_ldm( | |
original_config, | |
checkpoint, | |
model_type=model_type, | |
local_files_only=local_files_only, | |
torch_dtype=torch_dtype, | |
) | |
return text_encoder_components | |
if component_name == "safety_checker": | |
if load_safety_checker: | |
from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained( | |
"CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype | |
) | |
else: | |
safety_checker = None | |
return {"safety_checker": safety_checker} | |
if component_name == "feature_extractor": | |
if load_safety_checker: | |
feature_extractor = AutoFeatureExtractor.from_pretrained( | |
"CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only | |
) | |
else: | |
feature_extractor = None | |
return {"feature_extractor": feature_extractor} | |
return | |
def set_additional_components( | |
pipeline_class_name, | |
original_config, | |
checkpoint=None, | |
model_type=None, | |
): | |
components = {} | |
if pipeline_class_name in REFINER_PIPELINES: | |
model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type) | |
is_refiner = model_type == "SDXL-Refiner" | |
components.update( | |
{ | |
"requires_aesthetics_score": is_refiner, | |
"force_zeros_for_empty_prompt": False if is_refiner else True, | |
} | |
) | |
return components | |
class FromSingleFileMixin: | |
""" | |
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`]. | |
""" | |
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): | |
r""" | |
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors` | |
format. The pipeline is set in evaluation mode (`model.eval()`) by default. | |
Parameters: | |
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A link to the `.ckpt` file (for example | |
`"https://huggingface.co./<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. | |
- A path to a *file* containing all pipeline weights. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
resume_download: | |
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 | |
of Diffusers. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
original_config_file (`str`, *optional*): | |
The path to the original config file that was used to train the model. If not provided, the config file | |
will be inferred from the checkpoint file. | |
model_type (`str`, *optional*): | |
The type of model to load. If not provided, the model type will be inferred from the checkpoint file. | |
image_size (`int`, *optional*): | |
The size of the image output. It's used to configure the `sample_size` parameter of the UNet and VAE | |
model. | |
load_safety_checker (`bool`, *optional*, defaults to `False`): | |
Whether to load the safety checker model or not. By default, the safety checker is not loaded unless a | |
`safety_checker` component is passed to the `kwargs`. | |
num_in_channels (`int`, *optional*): | |
Specify the number of input channels for the UNet model. Read more about how to configure UNet model | |
with this parameter | |
[here](https://huggingface.co./docs/diffusers/training/adapt_a_model#configure-unet2dconditionmodel-parameters). | |
scaling_factor (`float`, *optional*): | |
The scaling factor to use for the VAE model. If not provided, it is inferred from the config file | |
first. If the scaling factor is not found in the config file, the default value 0.18215 is used. | |
scheduler_type (`str`, *optional*): | |
The type of scheduler to load. If not provided, the scheduler type will be inferred from the checkpoint | |
file. | |
prediction_type (`str`, *optional*): | |
The type of prediction to load. If not provided, the prediction type will be inferred from the | |
checkpoint file. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline | |
class). The overwritten components are passed directly to the pipelines `__init__` method. See example | |
below for more information. | |
Examples: | |
```py | |
>>> from diffusers import StableDiffusionPipeline | |
>>> # Download pipeline from huggingface.co and cache. | |
>>> pipeline = StableDiffusionPipeline.from_single_file( | |
... "https://huggingface.co./WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors" | |
... ) | |
>>> # Download pipeline from local file | |
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt | |
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly") | |
>>> # Enable float16 and move to GPU | |
>>> pipeline = StableDiffusionPipeline.from_single_file( | |
... "https://huggingface.co./runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", | |
... torch_dtype=torch.float16, | |
... ) | |
>>> pipeline.to("cuda") | |
``` | |
""" | |
original_config_file = kwargs.pop("original_config_file", None) | |
resume_download = kwargs.pop("resume_download", None) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
cache_dir = kwargs.pop("cache_dir", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
class_name = cls.__name__ | |
original_config, checkpoint = fetch_ldm_config_and_checkpoint( | |
pretrained_model_link_or_path=pretrained_model_link_or_path, | |
class_name=class_name, | |
original_config_file=original_config_file, | |
resume_download=resume_download, | |
force_download=force_download, | |
proxies=proxies, | |
token=token, | |
revision=revision, | |
local_files_only=local_files_only, | |
cache_dir=cache_dir, | |
) | |
from ..pipelines.pipeline_utils import _get_pipeline_class | |
pipeline_class = _get_pipeline_class( | |
cls, | |
config=None, | |
cache_dir=cache_dir, | |
) | |
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class) | |
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | |
model_type = kwargs.pop("model_type", None) | |
image_size = kwargs.pop("image_size", None) | |
load_safety_checker = (kwargs.pop("load_safety_checker", False)) or ( | |
passed_class_obj.get("safety_checker", None) is not None | |
) | |
init_kwargs = {} | |
for name in expected_modules: | |
if name in passed_class_obj: | |
init_kwargs[name] = passed_class_obj[name] | |
else: | |
components = build_sub_model_components( | |
init_kwargs, | |
class_name, | |
name, | |
original_config, | |
checkpoint, | |
model_type=model_type, | |
image_size=image_size, | |
load_safety_checker=load_safety_checker, | |
local_files_only=local_files_only, | |
torch_dtype=torch_dtype, | |
**kwargs, | |
) | |
if not components: | |
continue | |
init_kwargs.update(components) | |
additional_components = set_additional_components( | |
class_name, original_config, checkpoint=checkpoint, model_type=model_type | |
) | |
if additional_components: | |
init_kwargs.update(additional_components) | |
init_kwargs.update(passed_pipe_kwargs) | |
pipe = pipeline_class(**init_kwargs) | |
if torch_dtype is not None: | |
pipe.to(dtype=torch_dtype) | |
return pipe | |