File size: 13,524 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from huggingface_hub.utils import validate_hf_hub_args

from ..utils import is_transformers_available, logging
from .single_file_utils import (
    create_diffusers_unet_model_from_ldm,
    create_diffusers_vae_model_from_ldm,
    create_scheduler_from_ldm,
    create_text_encoders_and_tokenizers_from_ldm,
    fetch_ldm_config_and_checkpoint,
    infer_model_type,
)


logger = logging.get_logger(__name__)

# Pipelines that support the SDXL Refiner checkpoint
REFINER_PIPELINES = [
    "StableDiffusionXLImg2ImgPipeline",
    "StableDiffusionXLInpaintPipeline",
    "StableDiffusionXLControlNetImg2ImgPipeline",
]

if is_transformers_available():
    from transformers import AutoFeatureExtractor


def build_sub_model_components(
    pipeline_components,
    pipeline_class_name,
    component_name,
    original_config,
    checkpoint,
    local_files_only=False,
    load_safety_checker=False,
    model_type=None,
    image_size=None,
    torch_dtype=None,
    **kwargs,
):
    if component_name in pipeline_components:
        return {}

    if component_name == "unet":
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)

        unet_components = create_diffusers_unet_model_from_ldm(
            pipeline_class_name,
            original_config,
            checkpoint,
            num_in_channels=num_in_channels,
            image_size=image_size,
            torch_dtype=torch_dtype,
            model_type=model_type,
            upcast_attention=upcast_attention,
        )
        return unet_components

    if component_name == "vae":
        scaling_factor = kwargs.get("scaling_factor", None)
        vae_components = create_diffusers_vae_model_from_ldm(
            pipeline_class_name,
            original_config,
            checkpoint,
            image_size,
            scaling_factor,
            torch_dtype,
            model_type=model_type,
        )
        return vae_components

    if component_name == "scheduler":
        scheduler_type = kwargs.get("scheduler_type", "ddim")
        prediction_type = kwargs.get("prediction_type", None)

        scheduler_components = create_scheduler_from_ldm(
            pipeline_class_name,
            original_config,
            checkpoint,
            scheduler_type=scheduler_type,
            prediction_type=prediction_type,
            model_type=model_type,
        )

        return scheduler_components

    if component_name in ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]:
        text_encoder_components = create_text_encoders_and_tokenizers_from_ldm(
            original_config,
            checkpoint,
            model_type=model_type,
            local_files_only=local_files_only,
            torch_dtype=torch_dtype,
        )
        return text_encoder_components

    if component_name == "safety_checker":
        if load_safety_checker:
            from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

            safety_checker = StableDiffusionSafetyChecker.from_pretrained(
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
            )
        else:
            safety_checker = None
        return {"safety_checker": safety_checker}

    if component_name == "feature_extractor":
        if load_safety_checker:
            feature_extractor = AutoFeatureExtractor.from_pretrained(
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
            )
        else:
            feature_extractor = None
        return {"feature_extractor": feature_extractor}

    return


def set_additional_components(
    pipeline_class_name,
    original_config,
    checkpoint=None,
    model_type=None,
):
    components = {}
    if pipeline_class_name in REFINER_PIPELINES:
        model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type)
        is_refiner = model_type == "SDXL-Refiner"
        components.update(
            {
                "requires_aesthetics_score": is_refiner,
                "force_zeros_for_empty_prompt": False if is_refiner else True,
            }
        )

    return components


class FromSingleFileMixin:
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """

    @classmethod
    @validate_hf_hub_args
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co./<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
                of Diffusers.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            original_config_file (`str`, *optional*):
                The path to the original config file that was used to train the model. If not provided, the config file
                will be inferred from the checkpoint file.
            model_type (`str`, *optional*):
                The type of model to load. If not provided, the model type will be inferred from the checkpoint file.
            image_size (`int`, *optional*):
                The size of the image output. It's used to configure the `sample_size` parameter of the UNet and VAE
                model.
            load_safety_checker (`bool`, *optional*, defaults to `False`):
                Whether to load the safety checker model or not. By default, the safety checker is not loaded unless a
                `safety_checker` component is passed to the `kwargs`.
            num_in_channels (`int`, *optional*):
                Specify the number of input channels for the UNet model. Read more about how to configure UNet model
                with this parameter
                [here](https://huggingface.co./docs/diffusers/training/adapt_a_model#configure-unet2dconditionmodel-parameters).
            scaling_factor (`float`, *optional*):
                The scaling factor to use for the VAE model. If not provided, it is inferred from the config file
                first. If the scaling factor is not found in the config file, the default value 0.18215 is used.
            scheduler_type (`str`, *optional*):
                The type of scheduler to load. If not provided, the scheduler type will be inferred from the checkpoint
                file.
            prediction_type (`str`, *optional*):
                The type of prediction to load. If not provided, the prediction type will be inferred from the
                checkpoint file.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = StableDiffusionPipeline.from_single_file(
        ...     "https://huggingface.co./WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")

        >>> # Enable float16 and move to GPU
        >>> pipeline = StableDiffusionPipeline.from_single_file(
        ...     "https://huggingface.co./runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        original_config_file = kwargs.pop("original_config_file", None)
        resume_download = kwargs.pop("resume_download", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        cache_dir = kwargs.pop("cache_dir", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
        torch_dtype = kwargs.pop("torch_dtype", None)

        class_name = cls.__name__

        original_config, checkpoint = fetch_ldm_config_and_checkpoint(
            pretrained_model_link_or_path=pretrained_model_link_or_path,
            class_name=class_name,
            original_config_file=original_config_file,
            resume_download=resume_download,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
        )

        from ..pipelines.pipeline_utils import _get_pipeline_class

        pipeline_class = _get_pipeline_class(
            cls,
            config=None,
            cache_dir=cache_dir,
        )

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        model_type = kwargs.pop("model_type", None)
        image_size = kwargs.pop("image_size", None)
        load_safety_checker = (kwargs.pop("load_safety_checker", False)) or (
            passed_class_obj.get("safety_checker", None) is not None
        )

        init_kwargs = {}
        for name in expected_modules:
            if name in passed_class_obj:
                init_kwargs[name] = passed_class_obj[name]
            else:
                components = build_sub_model_components(
                    init_kwargs,
                    class_name,
                    name,
                    original_config,
                    checkpoint,
                    model_type=model_type,
                    image_size=image_size,
                    load_safety_checker=load_safety_checker,
                    local_files_only=local_files_only,
                    torch_dtype=torch_dtype,
                    **kwargs,
                )
                if not components:
                    continue
                init_kwargs.update(components)

        additional_components = set_additional_components(
            class_name, original_config, checkpoint=checkpoint, model_type=model_type
        )
        if additional_components:
            init_kwargs.update(additional_components)

        init_kwargs.update(passed_pipe_kwargs)
        pipe = pipeline_class(**init_kwargs)

        if torch_dtype is not None:
            pipe.to(dtype=torch_dtype)

        return pipe