Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from datasets import load_dataset | |
# Load the Spider dataset | |
spider_dataset = load_dataset("HusnaManakkot/haispider", split='train') # Load a subset of the dataset | |
# Extract schema information from the Spider dataset | |
table_names = set() | |
column_names = set() | |
for item in spider_dataset: | |
for table in item['db_id']: | |
table_names.add(table) | |
for column in item['question']: | |
column_names.add(column) | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available | |
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available | |
def generate_sql_from_user_input(query): | |
# Generate SQL for the user's query | |
input_text = "translate English to SQL: " + query | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True) | |
outputs = model.generate(**inputs, max_length=512) | |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Post-process the SQL query to match the dataset's schema | |
for table_name in table_names: | |
if "TABLE" in sql_query: | |
sql_query = sql_query.replace("TABLE", table_name) | |
break # Assuming only one table is referenced in the query | |
for column_name in column_names: | |
if "COLUMN" in sql_query: | |
sql_query = sql_query.replace("COLUMN", column_name, 1) | |
return sql_query | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=generate_sql_from_user_input, | |
inputs=gr.Textbox(label="Enter your natural language query"), | |
outputs=gr.Textbox(label="Generated SQL Query"), | |
title="NL to SQL with T5 using Spider Dataset", | |
description="This model generates an SQL query for your natural language input based on the Spider dataset." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() |