import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from datasets import load_dataset # Load the Spider dataset spider_dataset = load_dataset("HusnaManakkot/haispider", split='train') # Load a subset of the dataset # Extract schema information from the Spider dataset table_names = set() column_names = set() for item in spider_dataset: for table in item['db_id']: table_names.add(table) for column in item['question']: column_names.add(column) # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available def generate_sql_from_user_input(query): # Generate SQL for the user's query input_text = "translate English to SQL: " + query inputs = tokenizer(input_text, return_tensors="pt", padding=True) outputs = model.generate(**inputs, max_length=512) sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True) # Post-process the SQL query to match the dataset's schema for table_name in table_names: if "TABLE" in sql_query: sql_query = sql_query.replace("TABLE", table_name) break # Assuming only one table is referenced in the query for column_name in column_names: if "COLUMN" in sql_query: sql_query = sql_query.replace("COLUMN", column_name, 1) return sql_query # Create a Gradio interface interface = gr.Interface( fn=generate_sql_from_user_input, inputs=gr.Textbox(label="Enter your natural language query"), outputs=gr.Textbox(label="Generated SQL Query"), title="NL to SQL with T5 using Spider Dataset", description="This model generates an SQL query for your natural language input based on the Spider dataset." ) # Launch the app if __name__ == "__main__": interface.launch()