Spaces:
Runtime error
Runtime error
Hu
commited on
Commit
•
a58728b
1
Parent(s):
64c514e
update model
Browse files
app.py
CHANGED
@@ -23,9 +23,13 @@ article = """
|
|
23 |
<p>📦 Dataset <a href="https://github.com/eugenesiow/super-image-data">this GitHub repo</a></p>
|
24 |
</div>
|
25 |
"""
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# load model
|
28 |
-
print("Loading SRCNN model...")
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
|
31 |
model = SRCNNModel().to(device)
|
@@ -33,7 +37,8 @@ model.load_state_dict(
|
|
33 |
torch.load("SRCNNmodel_trained.pt", map_location=torch.device(device))
|
34 |
)
|
35 |
model.eval()
|
36 |
-
print("SRCNN model loaded!")
|
|
|
37 |
|
38 |
# def image_grid(imgs, rows, cols):
|
39 |
# '''
|
@@ -48,18 +53,17 @@ print("SRCNN model loaded!")
|
|
48 |
# for i, img in enumerate(imgs):
|
49 |
# grid.paste(img, box=(i%cols*w, i//cols*h))
|
50 |
# return grid
|
51 |
-
examples = [
|
52 |
-
["LR_image.png"],
|
53 |
-
["barbara.png"],
|
54 |
-
]
|
55 |
|
56 |
|
57 |
def sepia(image):
|
58 |
# gradio open image as np array
|
59 |
image = Image.fromarray(image, mode="RGB")
|
60 |
-
|
61 |
-
|
62 |
-
)
|
|
|
|
|
|
|
63 |
# grid = image_grid([out_final,image_bicubic],1,2)
|
64 |
return out_final, image_bicubic
|
65 |
|
|
|
23 |
<p>📦 Dataset <a href="https://github.com/eugenesiow/super-image-data">this GitHub repo</a></p>
|
24 |
</div>
|
25 |
"""
|
26 |
+
examples = [
|
27 |
+
["LR_image.png"],
|
28 |
+
["barbara.png"],
|
29 |
+
]
|
30 |
|
31 |
# load model
|
32 |
+
# print("Loading SRCNN model...")
|
33 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
|
35 |
model = SRCNNModel().to(device)
|
|
|
37 |
torch.load("SRCNNmodel_trained.pt", map_location=torch.device(device))
|
38 |
)
|
39 |
model.eval()
|
40 |
+
# print("SRCNN model loaded!")
|
41 |
+
|
42 |
|
43 |
# def image_grid(imgs, rows, cols):
|
44 |
# '''
|
|
|
53 |
# for i, img in enumerate(imgs):
|
54 |
# grid.paste(img, box=(i%cols*w, i//cols*h))
|
55 |
# return grid
|
|
|
|
|
|
|
|
|
56 |
|
57 |
|
58 |
def sepia(image):
|
59 |
# gradio open image as np array
|
60 |
image = Image.fromarray(image, mode="RGB")
|
61 |
+
|
62 |
+
# prediction
|
63 |
+
with torch.no_grad():
|
64 |
+
out_final, image_bicubic, image = pred_SRCNN(
|
65 |
+
model=model, image=image, device=device
|
66 |
+
)
|
67 |
# grid = image_grid([out_final,image_bicubic],1,2)
|
68 |
return out_final, image_bicubic
|
69 |
|
model.py
CHANGED
@@ -59,22 +59,22 @@ def pred_SRCNN(model,image,device,scale_factor=2):
|
|
59 |
return out_final,image_bicubic,image
|
60 |
|
61 |
|
62 |
-
def main():
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
|
79 |
-
if __name__=="__main__":
|
80 |
-
|
|
|
59 |
return out_final,image_bicubic,image
|
60 |
|
61 |
|
62 |
+
# def main():
|
63 |
+
# print("Loading SRCNN model...")
|
64 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
65 |
|
66 |
+
# model = SRCNNModel().to(device)
|
67 |
+
# model.load_state_dict(torch.load('SRCNNmodel_trained.pt'))
|
68 |
+
# model.eval()
|
69 |
+
# print("SRCNN model loaded!")
|
70 |
|
71 |
+
# image_path = "LR_image.png"
|
72 |
|
73 |
+
# out_final,image_bicubic,image = pred_SRCNN(model=model,image_path=image_path,device=device)
|
74 |
+
# image.show()
|
75 |
+
# out_final.show()
|
76 |
+
# image_bicubic.show()
|
77 |
|
78 |
|
79 |
+
# if __name__=="__main__":
|
80 |
+
# main()
|