Hu commited on
Commit
64c514e
·
1 Parent(s): c373d06

formatting

Browse files
Files changed (1) hide show
  1. app.py +29 -8
app.py CHANGED
@@ -26,10 +26,12 @@ article = """
26
 
27
  # load model
28
  print("Loading SRCNN model...")
29
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
30
 
31
  model = SRCNNModel().to(device)
32
- model.load_state_dict(torch.load('SRCNNmodel_trained.pt',map_location=torch.device(device) ))
 
 
33
  model.eval()
34
  print("SRCNN model loaded!")
35
 
@@ -42,18 +44,37 @@ print("SRCNN model loaded!")
42
  # w, h = imgs[0].size
43
  # grid = Image.new('RGB', size=(cols*w, rows*h))
44
  # grid_w, grid_h = grid.size
45
-
46
  # for i, img in enumerate(imgs):
47
  # grid.paste(img, box=(i%cols*w, i//cols*h))
48
  # return grid
 
 
 
 
 
49
 
50
  def sepia(image):
51
  # gradio open image as np array
52
- image = Image.fromarray(image,mode='RGB')
53
- out_final,image_bicubic,image = pred_SRCNN(model=model,image=image,device=device)
 
 
54
  # grid = image_grid([out_final,image_bicubic],1,2)
55
- return out_final,image_bicubic
 
56
 
57
- demo = gr.Interface(fn = sepia, inputs=gr.inputs.Image(label="Upload image"), outputs=[gr.outputs.Image(label="Conv net"), gr.outputs.Image(label="Bicubic interpoloation")],title=title,description = description,article = article,examples=[['LR_image.png'],['barbara.png']])
 
 
 
 
 
 
 
 
 
 
 
58
 
59
- demo.launch()
 
26
 
27
  # load model
28
  print("Loading SRCNN model...")
29
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
 
31
  model = SRCNNModel().to(device)
32
+ model.load_state_dict(
33
+ torch.load("SRCNNmodel_trained.pt", map_location=torch.device(device))
34
+ )
35
  model.eval()
36
  print("SRCNN model loaded!")
37
 
 
44
  # w, h = imgs[0].size
45
  # grid = Image.new('RGB', size=(cols*w, rows*h))
46
  # grid_w, grid_h = grid.size
47
+
48
  # for i, img in enumerate(imgs):
49
  # grid.paste(img, box=(i%cols*w, i//cols*h))
50
  # return grid
51
+ examples = [
52
+ ["LR_image.png"],
53
+ ["barbara.png"],
54
+ ]
55
+
56
 
57
  def sepia(image):
58
  # gradio open image as np array
59
+ image = Image.fromarray(image, mode="RGB")
60
+ out_final, image_bicubic, image = pred_SRCNN(
61
+ model=model, image=image, device=device
62
+ )
63
  # grid = image_grid([out_final,image_bicubic],1,2)
64
+ return out_final, image_bicubic
65
+
66
 
67
+ demo = gr.Interface(
68
+ fn=sepia,
69
+ inputs=gr.inputs.Image(label="Upload image"),
70
+ outputs=[
71
+ gr.outputs.Image(label="Convolutional neural network"),
72
+ gr.outputs.Image(label="Bicubic interpoloation"),
73
+ ],
74
+ title=title,
75
+ description=description,
76
+ article=article,
77
+ examples=examples,
78
+ )
79
 
80
+ demo.launch()