Spaces:
Han-123
/
Running on Zero

IDM-VTON
update IDM-VTON Demo
938e515
|
raw
history blame
4.09 kB

TridentNet in Detectron2

Scale-Aware Trident Networks for Object Detection

Yanghao Li*, Yuntao Chen*, Naiyan Wang, Zhaoxiang Zhang

[TridentNet] [arXiv] [BibTeX]

In this repository, we implement TridentNet-Fast in Detectron2. Trident Network (TridentNet) aims to generate scale-specific feature maps with a uniform representational power. We construct a parallel multi-branch architecture in which each branch shares the same transformation parameters but with different receptive fields. TridentNet-Fast is a fast approximation version of TridentNet that could achieve significant improvements without any additional parameters and computational cost.

Training

To train a model, run

python /path/to/detectron2/projects/TridentNet/train_net.py --config-file <config.yaml>

For example, to launch end-to-end TridentNet training with ResNet-50 backbone on 8 GPUs, one should execute:

python /path/to/detectron2/projects/TridentNet/train_net.py --config-file configs/tridentnet_fast_R_50_C4_1x.yaml --num-gpus 8

Evaluation

Model evaluation can be done similarly:

python /path/to/detectron2/projects/TridentNet/train_net.py --config-file configs/tridentnet_fast_R_50_C4_1x.yaml --eval-only MODEL.WEIGHTS model.pth

Results on MS-COCO in Detectron2

Model Backbone Head lr sched AP AP50 AP75 APs APm APl download
Faster R50-C4 C5-512ROI 1X 35.7 56.1 38.0 19.2 40.9 48.7 model | metrics
TridentFast R50-C4 C5-128ROI 1X 38.0 58.1 40.8 19.5 42.2 54.6 model | metrics
Faster R50-C4 C5-512ROI 3X 38.4 58.7 41.3 20.7 42.7 53.1 model | metrics
TridentFast R50-C4 C5-128ROI 3X 40.6 60.8 43.6 23.4 44.7 57.1 model | metrics
Faster R101-C4 C5-512ROI 3X 41.1 61.4 44.0 22.2 45.5 55.9 model | metrics
TridentFast R101-C4 C5-128ROI 3X 43.6 63.4 47.0 24.3 47.8 60.0 model | metrics

Citing TridentNet

If you use TridentNet, please use the following BibTeX entry.

@InProceedings{li2019scale,
  title={Scale-Aware Trident Networks for Object Detection},
  author={Li, Yanghao and Chen, Yuntao and Wang, Naiyan and Zhang, Zhaoxiang},
  journal={The International Conference on Computer Vision (ICCV)},
  year={2019}
}