File size: 10,916 Bytes
91a8b2f
 
 
fe43b7a
91a8b2f
 
 
 
 
 
 
fe43b7a
91a8b2f
 
fe43b7a
91a8b2f
fe43b7a
91a8b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe43b7a
91a8b2f
 
fe43b7a
91a8b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe43b7a
91a8b2f
fe43b7a
91a8b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe43b7a
91a8b2f
 
fe43b7a
91a8b2f
 
fe43b7a
91a8b2f
 
fe43b7a
91a8b2f
fe43b7a
91a8b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe43b7a
91a8b2f
 
 
 
 
 
fe43b7a
91a8b2f
fde18d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import sys
import argparse
import torch
from torch.utils.data import DataLoader
from transformers import EsmForMaskedLM, AutoModel, EsmTokenizer
from utils.drug_tokenizer import DrugTokenizer
from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI
from bertviz import head_view
import tempfile
from flask import Flask, request, render_template_string

os.environ["TOKENIZERS_PARALLELISM"] = "false"
sys.path.append("../")

app = Flask(__name__)

def parse_config():
    parser = argparse.ArgumentParser()
    parser.add_argument('-f')
    parser.add_argument("--prot_encoder_path", type=str, default="westlake-repl/SaProt_650M_AF2", help="path/name of protein encoder model located")
    parser.add_argument("--drug_encoder_path", type=str, default="HUBioDataLab/SELFormer", help="path/name of SMILE pre-trained language model")
    parser.add_argument("--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}")
    parser.add_argument("--fusion", default="CAN", type=str, help="{CAN|BAN}")
    parser.add_argument("--batch_size", type=int, default=64)
    parser.add_argument("--group_size", type=int, default=1)
    parser.add_argument("--lr", type=float, default=1e-4)
    parser.add_argument("--dropout", type=float, default=0.1)
    parser.add_argument("--test", type=int, default=0)
    parser.add_argument("--use_pooled", action="store_true", default=True)
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
    parser.add_argument("--save_path_prefix", type=str, default="save_model_ckp/", help="save the result in which directory")
    parser.add_argument("--save_name", default="fine_tune", type=str, help="the name of the saved file")
    parser.add_argument("--dataset", type=str, default="Human", help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')")
    return parser.parse_args()

args = parse_config()
device = args.device

prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path)
drug_tokenizer = DrugTokenizer()

prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path)
drug_model = AutoModel.from_pretrained(args.drug_encoder_path)

encoding = Pre_encoded(prot_model, drug_model, args).to(device)

def get_case_feature(model, dataloader, device):
    with torch.no_grad():
        for step, batch in enumerate(dataloader):
            prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask, label = batch
            prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask = \
                prot_input_ids.to(device), prot_attention_mask.to(device), drug_input_ids.to(device), drug_attention_mask.to(device)

            prot_embed, drug_embed = model.encoding(prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask)
            prot_embed, drug_embed = prot_embed.cpu(), drug_embed.cpu()
            prot_input_ids, drug_input_ids = prot_input_ids.cpu(), drug_input_ids.cpu()
            prot_attention_mask, drug_attention_mask = prot_attention_mask.cpu(), drug_attention_mask.cpu()
            label = label.cpu()

            return [(prot_embed, drug_embed, prot_input_ids, drug_input_ids, prot_attention_mask, drug_attention_mask, label)]

def visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer):
    model.eval()
    with torch.no_grad():
        for batch in case_features:
            prot, drug, prot_ids, drug_ids, prot_mask, drug_mask, label = batch
            prot, drug = prot.to(device), drug.to(device)
            prot_mask, drug_mask = prot_mask.to(device), drug_mask.to(device)

            output, attention_weights = model(prot, drug, prot_mask, drug_mask)
            prot_tokens = [prot_tokenizer.decode([pid.item()], skip_special_tokens=True) for pid in prot_ids.squeeze()]
            drug_tokens = [drug_tokenizer.decode([did.item()], skip_special_tokens=True) for did in drug_ids.squeeze()]
            tokens = prot_tokens + drug_tokens

            attention_weights = attention_weights.unsqueeze(1)

            # Generate HTML content using head_view with html_action='return'
            html_head_view = head_view(attention_weights, tokens, sentence_b_start=512, html_action='return')

            # Parse the HTML and modify it to replace sentence labels
            html_content = html_head_view.data
            html_content = html_content.replace("Sentence A -> Sentence A", "Protein -> Protein")
            html_content = html_content.replace("Sentence B -> Sentence B", "Drug -> Drug")
            html_content = html_content.replace("Sentence A -> Sentence B", "Protein -> Drug")
            html_content = html_content.replace("Sentence B -> Sentence A", "Drug -> Protein")

            # Save the modified HTML content to a temporary file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f:
                f.write(html_content.encode('utf-8'))
                temp_file_path = f.name
            
            return temp_file_path

@app.route('/', methods=['GET', 'POST'])
def index():
    protein_sequence = ""
    drug_sequence = ""
    result = None

    if request.method == 'POST':
        if 'clear' in request.form:
            protein_sequence = ""
            drug_sequence = ""
        else:
            protein_sequence = request.form['protein_sequence']
            drug_sequence = request.form['drug_sequence']
            
            dataset = [(protein_sequence, drug_sequence, 1)]
            dataloader = DataLoader(dataset, batch_size=1, collate_fn=collate_fn_batch_encoding)
            
            case_features = get_case_feature(encoding, dataloader, device)
            model = FusionDTI(446, 768, args).to(device)
            
            best_model_dir = f"{args.save_path_prefix}{args.dataset}_{args.fusion}"  
            checkpoint_path = os.path.join(best_model_dir, 'best_model.ckpt')
            
            if os.path.exists(checkpoint_path):
                model.load_state_dict(torch.load(checkpoint_path, map_location=device))
            
            html_file_path = visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer)
            
            with open(html_file_path, 'r') as f:
                result = f.read()
    
    return render_template_string('''
        <html>
            <head>
                <title>Drug Target Interaction Visualization</title>
                <style>
                    body { font-family: 'Times New Roman', Times, serif; margin: 40px; }
                    h2 { color: #333; }
                    .container { display: flex; }
                    .left { flex: 1; padding-right: 20px; }
                    .right { flex: 1; }
                    textarea {
                        width: 100%;
                        padding: 12px 20px;
                        margin: 8px 0;
                        display: inline-block;
                        border: 1px solid #ccc;
                        border-radius: 4px;
                        box-sizing: border-box;
                        font-size: 16px;
                        font-family: 'Times New Roman', Times, serif;
                    }
                    .button-container {
                        display: flex;
                        justify-content: space-between;
                    }
                    input[type="submit"], .button {
                        width: 48%;
                        color: white;
                        padding: 14px 20px;
                        margin: 8px 0;
                        border: none;
                        border-radius: 4px;
                        cursor: pointer;
                        font-size: 16px;
                        font-family: 'Times New Roman', Times, serif;
                    }
                    .submit {
                        background-color: #FFA500;
                    }
                    .submit:hover {
                        background-color: #FF8C00;
                    }
                    .clear {
                        background-color: #D3D3D3;
                    }
                    .clear:hover {
                        background-color: #A9A9A9;
                    }
                    .result {
                        font-size: 18px;
                    }
                </style>
            </head>
            <body>
                <h2 style="text-align: center;">Drug Target Interaction Visualization</h2>
                <div class="container">
                    <div class="left">
                        <form method="post">
                            <label for="protein_sequence">Protein Sequence:</label>
                            <textarea id="protein_sequence" name="protein_sequence" rows="4" placeholder="Enter protein sequence here..." required>{{ protein_sequence }}</textarea><br>
                            <label for="drug_sequence">Drug Sequence:</label>
                            <textarea id="drug_sequence" name="drug_sequence" rows="4" placeholder="Enter drug sequence here..." required>{{ drug_sequence }}</textarea><br>
                            <div class="button-container">
                                <input type="submit" name="submit" class="button submit" value="Submit">
                                <input type="submit" name="clear" class="button clear" value="Clear">
                            </div>
                        </form>
                    </div>
                    <div class="right" style="display: flex; justify-content: center; align-items: center;">
                        {% if result %}
                            <div class="result">
                                {{ result|safe }}
                            </div>
                        {% endif %}
                    </div>
                </div>
            </body>
        </html>
    ''', protein_sequence=protein_sequence, drug_sequence=drug_sequence, result=result)

def collate_fn_batch_encoding(batch):
    query1, query2, scores = zip(*batch)
    
    query_encodings1 = prot_tokenizer.batch_encode_plus(
        list(query1),
        max_length=512,
        padding="max_length",
        truncation=True,
        add_special_tokens=True,
        return_tensors="pt",
    )
    query_encodings2 = drug_tokenizer.batch_encode_plus(
        list(query2),
        max_length=512,
        padding="max_length",
        truncation=True,
        add_special_tokens=True,
        return_tensors="pt",
    )
    scores = torch.tensor(list(scores))

    attention_mask1 = query_encodings1["attention_mask"].bool()
    attention_mask2 = query_encodings2["attention_mask"].bool()

    return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores

if __name__ == '__main__':
    app.run(debug=True, host="0.0.0.0", port=7860)