Spaces:
Sleeping
Sleeping
ZhaohanM
commited on
Commit
•
91a8b2f
1
Parent(s):
791eac9
Update space
Browse files- app.py +218 -131
- requirements.txt +2 -4
app.py
CHANGED
@@ -1,146 +1,233 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
]
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
|
97 |
-
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
|
117 |
-
with
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import argparse
|
|
|
4 |
import torch
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
from transformers import EsmForMaskedLM, AutoModel, EsmTokenizer
|
7 |
+
from utils.drug_tokenizer import DrugTokenizer
|
8 |
+
from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI
|
9 |
+
from bertviz import head_view
|
10 |
+
import tempfile
|
11 |
+
from flask import Flask, request, render_template_string
|
12 |
|
13 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
14 |
+
sys.path.append("../")
|
15 |
|
16 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def parse_config():
|
19 |
+
parser = argparse.ArgumentParser()
|
20 |
+
parser.add_argument('-f')
|
21 |
+
parser.add_argument("--prot_encoder_path", type=str, default="westlake-repl/SaProt_650M_AF2", help="path/name of protein encoder model located")
|
22 |
+
parser.add_argument("--drug_encoder_path", type=str, default="HUBioDataLab/SELFormer", help="path/name of SMILE pre-trained language model")
|
23 |
+
parser.add_argument("--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}")
|
24 |
+
parser.add_argument("--fusion", default="CAN", type=str, help="{CAN|BAN}")
|
25 |
+
parser.add_argument("--batch_size", type=int, default=64)
|
26 |
+
parser.add_argument("--group_size", type=int, default=1)
|
27 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
28 |
+
parser.add_argument("--dropout", type=float, default=0.1)
|
29 |
+
parser.add_argument("--test", type=int, default=0)
|
30 |
+
parser.add_argument("--use_pooled", action="store_true", default=True)
|
31 |
+
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
parser.add_argument("--save_path_prefix", type=str, default="save_model_ckp/", help="save the result in which directory")
|
33 |
+
parser.add_argument("--save_name", default="fine_tune", type=str, help="the name of the saved file")
|
34 |
+
parser.add_argument("--dataset", type=str, default="Human", help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')")
|
35 |
+
return parser.parse_args()
|
36 |
|
37 |
+
args = parse_config()
|
38 |
+
device = args.device
|
39 |
|
40 |
+
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path)
|
41 |
+
drug_tokenizer = DrugTokenizer()
|
42 |
+
|
43 |
+
prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path)
|
44 |
+
drug_model = AutoModel.from_pretrained(args.drug_encoder_path)
|
45 |
+
|
46 |
+
encoding = Pre_encoded(prot_model, drug_model, args).to(device)
|
47 |
+
|
48 |
+
def get_case_feature(model, dataloader, device):
|
49 |
+
with torch.no_grad():
|
50 |
+
for step, batch in enumerate(dataloader):
|
51 |
+
prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask, label = batch
|
52 |
+
prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask = \
|
53 |
+
prot_input_ids.to(device), prot_attention_mask.to(device), drug_input_ids.to(device), drug_attention_mask.to(device)
|
54 |
+
|
55 |
+
prot_embed, drug_embed = model.encoding(prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask)
|
56 |
+
prot_embed, drug_embed = prot_embed.cpu(), drug_embed.cpu()
|
57 |
+
prot_input_ids, drug_input_ids = prot_input_ids.cpu(), drug_input_ids.cpu()
|
58 |
+
prot_attention_mask, drug_attention_mask = prot_attention_mask.cpu(), drug_attention_mask.cpu()
|
59 |
+
label = label.cpu()
|
60 |
+
|
61 |
+
return [(prot_embed, drug_embed, prot_input_ids, drug_input_ids, prot_attention_mask, drug_attention_mask, label)]
|
62 |
+
|
63 |
+
def visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer):
|
64 |
+
model.eval()
|
65 |
+
with torch.no_grad():
|
66 |
+
for batch in case_features:
|
67 |
+
prot, drug, prot_ids, drug_ids, prot_mask, drug_mask, label = batch
|
68 |
+
prot, drug = prot.to(device), drug.to(device)
|
69 |
+
prot_mask, drug_mask = prot_mask.to(device), drug_mask.to(device)
|
70 |
+
|
71 |
+
output, attention_weights = model(prot, drug, prot_mask, drug_mask)
|
72 |
+
prot_tokens = [prot_tokenizer.decode([pid.item()], skip_special_tokens=True) for pid in prot_ids.squeeze()]
|
73 |
+
drug_tokens = [drug_tokenizer.decode([did.item()], skip_special_tokens=True) for did in drug_ids.squeeze()]
|
74 |
+
tokens = prot_tokens + drug_tokens
|
75 |
+
|
76 |
+
attention_weights = attention_weights.unsqueeze(1)
|
77 |
+
|
78 |
+
# Generate HTML content using head_view with html_action='return'
|
79 |
+
html_head_view = head_view(attention_weights, tokens, sentence_b_start=512, html_action='return')
|
80 |
+
|
81 |
+
# Parse the HTML and modify it to replace sentence labels
|
82 |
+
html_content = html_head_view.data
|
83 |
+
html_content = html_content.replace("Sentence A -> Sentence A", "Protein -> Protein")
|
84 |
+
html_content = html_content.replace("Sentence B -> Sentence B", "Drug -> Drug")
|
85 |
+
html_content = html_content.replace("Sentence A -> Sentence B", "Protein -> Drug")
|
86 |
+
html_content = html_content.replace("Sentence B -> Sentence A", "Drug -> Protein")
|
87 |
+
|
88 |
+
# Save the modified HTML content to a temporary file
|
89 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f:
|
90 |
+
f.write(html_content.encode('utf-8'))
|
91 |
+
temp_file_path = f.name
|
92 |
|
93 |
+
return temp_file_path
|
|
|
|
|
94 |
|
95 |
+
@app.route('/', methods=['GET', 'POST'])
|
96 |
+
def index():
|
97 |
+
protein_sequence = ""
|
98 |
+
drug_sequence = ""
|
99 |
+
result = None
|
100 |
+
|
101 |
+
if request.method == 'POST':
|
102 |
+
if 'clear' in request.form:
|
103 |
+
protein_sequence = ""
|
104 |
+
drug_sequence = ""
|
105 |
+
else:
|
106 |
+
protein_sequence = request.form['protein_sequence']
|
107 |
+
drug_sequence = request.form['drug_sequence']
|
108 |
+
|
109 |
+
dataset = [(protein_sequence, drug_sequence, 1)]
|
110 |
+
dataloader = DataLoader(dataset, batch_size=1, collate_fn=collate_fn_batch_encoding)
|
111 |
|
112 |
+
case_features = get_case_feature(encoding, dataloader, device)
|
113 |
+
model = FusionDTI(446, 768, args).to(device)
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
best_model_dir = f"{args.save_path_prefix}{args.dataset}_{args.fusion}"
|
116 |
+
checkpoint_path = os.path.join(best_model_dir, 'best_model.ckpt')
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
if os.path.exists(checkpoint_path):
|
119 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
|
120 |
|
121 |
+
html_file_path = visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
with open(html_file_path, 'r') as f:
|
124 |
+
result = f.read()
|
125 |
+
|
126 |
+
return render_template_string('''
|
127 |
+
<html>
|
128 |
+
<head>
|
129 |
+
<title>Drug Target Interaction Visualization</title>
|
130 |
+
<style>
|
131 |
+
body { font-family: 'Times New Roman', Times, serif; margin: 40px; }
|
132 |
+
h2 { color: #333; }
|
133 |
+
.container { display: flex; }
|
134 |
+
.left { flex: 1; padding-right: 20px; }
|
135 |
+
.right { flex: 1; }
|
136 |
+
textarea {
|
137 |
+
width: 100%;
|
138 |
+
padding: 12px 20px;
|
139 |
+
margin: 8px 0;
|
140 |
+
display: inline-block;
|
141 |
+
border: 1px solid #ccc;
|
142 |
+
border-radius: 4px;
|
143 |
+
box-sizing: border-box;
|
144 |
+
font-size: 16px;
|
145 |
+
font-family: 'Times New Roman', Times, serif;
|
146 |
+
}
|
147 |
+
.button-container {
|
148 |
+
display: flex;
|
149 |
+
justify-content: space-between;
|
150 |
+
}
|
151 |
+
input[type="submit"], .button {
|
152 |
+
width: 48%;
|
153 |
+
color: white;
|
154 |
+
padding: 14px 20px;
|
155 |
+
margin: 8px 0;
|
156 |
+
border: none;
|
157 |
+
border-radius: 4px;
|
158 |
+
cursor: pointer;
|
159 |
+
font-size: 16px;
|
160 |
+
font-family: 'Times New Roman', Times, serif;
|
161 |
+
}
|
162 |
+
.submit {
|
163 |
+
background-color: #FFA500;
|
164 |
+
}
|
165 |
+
.submit:hover {
|
166 |
+
background-color: #FF8C00;
|
167 |
+
}
|
168 |
+
.clear {
|
169 |
+
background-color: #D3D3D3;
|
170 |
+
}
|
171 |
+
.clear:hover {
|
172 |
+
background-color: #A9A9A9;
|
173 |
+
}
|
174 |
+
.result {
|
175 |
+
font-size: 18px;
|
176 |
+
}
|
177 |
+
</style>
|
178 |
+
</head>
|
179 |
+
<body>
|
180 |
+
<h2 style="text-align: center;">Drug Target Interaction Visualization</h2>
|
181 |
+
<div class="container">
|
182 |
+
<div class="left">
|
183 |
+
<form method="post">
|
184 |
+
<label for="protein_sequence">Protein Sequence:</label>
|
185 |
+
<textarea id="protein_sequence" name="protein_sequence" rows="4" placeholder="Enter protein sequence here..." required>{{ protein_sequence }}</textarea><br>
|
186 |
+
<label for="drug_sequence">Drug Sequence:</label>
|
187 |
+
<textarea id="drug_sequence" name="drug_sequence" rows="4" placeholder="Enter drug sequence here..." required>{{ drug_sequence }}</textarea><br>
|
188 |
+
<div class="button-container">
|
189 |
+
<input type="submit" name="submit" class="button submit" value="Submit">
|
190 |
+
<input type="submit" name="clear" class="button clear" value="Clear">
|
191 |
+
</div>
|
192 |
+
</form>
|
193 |
+
</div>
|
194 |
+
<div class="right" style="display: flex; justify-content: center; align-items: center;">
|
195 |
+
{% if result %}
|
196 |
+
<div class="result">
|
197 |
+
{{ result|safe }}
|
198 |
+
</div>
|
199 |
+
{% endif %}
|
200 |
+
</div>
|
201 |
+
</div>
|
202 |
+
</body>
|
203 |
+
</html>
|
204 |
+
''', protein_sequence=protein_sequence, drug_sequence=drug_sequence, result=result)
|
205 |
+
|
206 |
+
def collate_fn_batch_encoding(batch):
|
207 |
+
query1, query2, scores = zip(*batch)
|
208 |
+
|
209 |
+
query_encodings1 = prot_tokenizer.batch_encode_plus(
|
210 |
+
list(query1),
|
211 |
+
max_length=512,
|
212 |
+
padding="max_length",
|
213 |
+
truncation=True,
|
214 |
+
add_special_tokens=True,
|
215 |
+
return_tensors="pt",
|
216 |
+
)
|
217 |
+
query_encodings2 = drug_tokenizer.batch_encode_plus(
|
218 |
+
list(query2),
|
219 |
+
max_length=512,
|
220 |
+
padding="max_length",
|
221 |
+
truncation=True,
|
222 |
+
add_special_tokens=True,
|
223 |
+
return_tensors="pt",
|
224 |
)
|
225 |
+
scores = torch.tensor(list(scores))
|
226 |
+
|
227 |
+
attention_mask1 = query_encodings1["attention_mask"].bool()
|
228 |
+
attention_mask2 = query_encodings2["attention_mask"].bool()
|
229 |
+
|
230 |
+
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
|
231 |
|
232 |
+
if __name__ == '__main__':
|
233 |
+
app.run(debug=True, host='127.0.0.1', port=7860)
|
requirements.txt
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
-
|
2 |
-
diffusers
|
3 |
-
invisible_watermark
|
4 |
torch
|
5 |
transformers
|
6 |
-
|
|
|
1 |
+
Flask
|
|
|
|
|
2 |
torch
|
3 |
transformers
|
4 |
+
bertviz
|