import torch | |
import requests | |
from PIL import Image | |
from torchvision import transforms | |
import gradio as gr | |
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval() | |
# Download human-readable labels for ImageNet. | |
response = requests.get("https://git.io/JJkYN") | |
labels = response.text.split("\n") | |
def predict(inp): | |
inp = transforms.ToTensor()(inp).unsqueeze(0) | |
with torch.no_grad(): | |
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) | |
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} | |
return confidences | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=3), | |
examples=["lion.jpg", "cheetah.jpg"]) | |
demo.launch( | |
# show_api=True, share=True | |
) | |