File size: 783 Bytes
1e936b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacc07f
 
 
 
 
 
d7af86b
 
cc86fc1
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import requests
from PIL import Image
from torchvision import transforms
import gradio as gr

model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()

# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

def predict(inp):
  inp = transforms.ToTensor()(inp).unsqueeze(0)
  with torch.no_grad():
    prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
    confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
  return confidences


demo = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil"),
    outputs=gr.Label(num_top_classes=3),
    examples=["lion.jpg", "cheetah.jpg"])

demo.launch(
    # show_api=True, share=True
)